/** ****************************************************************************** * @file py32f002b_hal_rcc.h * @author MCU Application Team * @brief Header file of RCC HAL module. ****************************************************************************** * @attention * *

© Copyright (c) 2023 Puya Semiconductor Co. * All rights reserved.

* * This software component is licensed by Puya under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** * @attention * *

© Copyright (c) 2016 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __PY32F002B_HAL_RCC_H #define __PY32F002B_HAL_RCC_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "py32f002b_hal_def.h" /** @addtogroup PY32F002B_HAL_Driver * @{ */ /** @addtogroup RCC * @{ */ /* Private constants ---------------------------------------------------------*/ /** @addtogroup RCC_Private_Constants * @{ */ /* Defines used for Flags */ #define CR_REG_INDEX 1U #define BDCR_REG_INDEX 2U #define CSR_REG_INDEX 3U #define RCC_FLAG_MASK 0x1FU /* Define used for IS_RCC_CLOCKTYPE() */ #define RCC_CLOCKTYPE_ALL (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1) /*!< All clocktype to configure */ /** * @} */ /* Private macros ------------------------------------------------------------*/ /** @defgroup RCC_Private_Macros RCC Private Macros * @{ */ #define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) (((__OSCILLATOR__) == RCC_OSCILLATORTYPE_NONE) || \ (((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) || \ (((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) || \ (((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) || \ (((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)) #define IS_RCC_HSE(__HSE__) (((__HSE__) == RCC_HSE_BYPASS_ENABLE) || ((__HSE__) == RCC_HSE_BYPASS_DISABLE)) #define IS_RCC_LSE(__LSE__) (((__LSE__) == RCC_LSE_OFF) || ((__LSE__) == RCC_LSE_ON) || \ ((__LSE__) == RCC_LSE_BYPASS)) #define IS_RCC_HSI(__HSI__) (((__HSI__) == RCC_HSI_OFF) || ((__HSI__) == RCC_HSI_ON)) #if defined(RCC_HSI48M_SUPPORT) #define IS_RCC_HSI_CALIBRATION_VALUE(__VALUE__) (((__VALUE__) == RCC_HSICALIBRATION_24MHz) || \ ((__VALUE__) == RCC_HSICALIBRATION_48MHz)) #else #define IS_RCC_HSI_CALIBRATION_VALUE(__VALUE__) ((__VALUE__) == RCC_HSICALIBRATION_24MHz) #endif #define IS_RCC_HSIDIV(__DIV__) (((__DIV__) == RCC_HSI_DIV1) || ((__DIV__) == RCC_HSI_DIV2) || \ ((__DIV__) == RCC_HSI_DIV4) || ((__DIV__) == RCC_HSI_DIV8) || \ ((__DIV__) == RCC_HSI_DIV16) || ((__DIV__) == RCC_HSI_DIV32)|| \ ((__DIV__) == RCC_HSI_DIV64) || ((__DIV__) == RCC_HSI_DIV128)) #define IS_RCC_LSI(__LSI__) (((__LSI__) == RCC_LSI_OFF) || ((__LSI__) == RCC_LSI_ON)) #define IS_RCC_CLOCKTYPE(__CLK__) ((((__CLK__) & RCC_CLOCKTYPE_ALL) != 0x00UL) && (((__CLK__) & ~RCC_CLOCKTYPE_ALL) == 0x00UL)) #define IS_RCC_SYSCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_SYSCLKSOURCE_HSISYS) || \ ((__SOURCE__) == RCC_SYSCLKSOURCE_HSE) || \ ((__SOURCE__) == RCC_SYSCLKSOURCE_LSE) || \ ((__SOURCE__) == RCC_SYSCLKSOURCE_LSI)) #define IS_RCC_HCLK(__HCLK__) (((__HCLK__) == RCC_SYSCLK_DIV1) || ((__HCLK__) == RCC_SYSCLK_DIV2) || \ ((__HCLK__) == RCC_SYSCLK_DIV4) || ((__HCLK__) == RCC_SYSCLK_DIV8) || \ ((__HCLK__) == RCC_SYSCLK_DIV16) || ((__HCLK__) == RCC_SYSCLK_DIV64) || \ ((__HCLK__) == RCC_SYSCLK_DIV128) || ((__HCLK__) == RCC_SYSCLK_DIV256) || \ ((__HCLK__) == RCC_SYSCLK_DIV512)) #define IS_RCC_PCLK(__PCLK__) (((__PCLK__) == RCC_HCLK_DIV1) || ((__PCLK__) == RCC_HCLK_DIV2) || \ ((__PCLK__) == RCC_HCLK_DIV4) || ((__PCLK__) == RCC_HCLK_DIV8) || \ ((__PCLK__) == RCC_HCLK_DIV16)) #define IS_RCC_MCO(__MCOX__) (((__MCOX__) == RCC_MCO1) || ((__MCOX__) == RCC_MCO2)) #define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCOSOURCE_NOCLOCK) || \ ((__SOURCE__) == RCC_MCOSOURCE_SYSCLK) || \ ((__SOURCE__) == RCC_MCOSOURCE_HSI) || \ ((__SOURCE__) == RCC_MCOSOURCE_HSE) || \ ((__SOURCE__) == RCC_MCOSOURCE_LSI) || \ ((__SOURCE__) == RCC_MCOSOURCE_LSE)) #define IS_RCC_MCODIV(__DIV__) (((__DIV__) == RCC_MCODIV_1) || ((__DIV__) == RCC_MCODIV_2) || \ ((__DIV__) == RCC_MCODIV_4) || ((__DIV__) == RCC_MCODIV_8) || \ ((__DIV__) == RCC_MCODIV_16)|| ((__DIV__) == RCC_MCODIV_32) || \ ((__DIV__) == RCC_MCODIV_64)|| ((__DIV__) == RCC_MCODIV_128)) #define IS_RCC_LSE_DRIVE(__DRIVE__) (((__DRIVE__) == RCC_LSEDRIVE_LOWEST) || \ ((__DRIVE__) == RCC_LSEDRIVE_LOW) || \ ((__DRIVE__) == RCC_LSEDRIVE_MEDIUM) || \ ((__DRIVE__) == RCC_LSEDRIVE_HIGH)) /** * @} */ /* Exported types ------------------------------------------------------------*/ /** @defgroup RCC_Exported_Types RCC Exported Types * @{ */ /** * @brief RCC Internal/External Oscillator (HSE, HSI, LSE and LSI) configuration structure definition */ typedef struct { uint32_t OscillatorType; /*!< The oscillators to be configured. This parameter can be a value of @ref RCC_Oscillator_Type */ uint32_t HSEState; /*!< The new state of the HSE. This parameter can be a value of @ref RCC_HSE_Config */ uint32_t LSEState; /*!< The new state of the LSE. This parameter can be a value of @ref RCC_LSE_Config */ uint32_t LSEDriver; /*!< The driver factor of the LSE. This parameter can be a value of @ref RCC_LSE_Driver */ uint32_t HSIState; /*!< The new state of the HSI. This parameter can be a value of @ref RCC_HSI_Config */ uint32_t HSIDiv; /*!< The division factor of the HSI. This parameter can be a value of @ref RCC_HSI_Div */ uint32_t HSICalibrationValue; /*!< The calibration trimming value. This parameter can be a value of @ref RCC_HSI_Calibration */ uint32_t LSIState; /*!< The new state of the LSI. This parameter can be a value of @ref RCC_LSI_Config */ uint32_t LSICalibrationValue; /*!< The calibration trimming value. This parameter can be a value of @ref RCC_LSI_Calibration */ } RCC_OscInitTypeDef; /** * @brief RCC System, AHB and APB busses clock configuration structure definition */ typedef struct { uint32_t ClockType; /*!< The clock to be configured. This parameter can be a combination of @ref RCC_System_Clock_Type */ uint32_t SYSCLKSource; /*!< The clock source used as system clock (SYSCLK). This parameter can be a value of @ref RCC_System_Clock_Source */ uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK). This parameter can be a value of @ref RCC_AHB_Clock_Source */ uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK). This parameter can be a value of @ref RCC_APB1_Clock_Source */ } RCC_ClkInitTypeDef; /** * @} */ /* Exported constants --------------------------------------------------------*/ /** @defgroup RCC_Exported_Constants RCC Exported Constants * @{ */ /** @defgroup RCC_Timeout_Value Timeout Values * @{ */ #define RCC_DBP_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */ #define RCC_LSE_TIMEOUT_VALUE LSE_STARTUP_TIMEOUT /* LSE timeout in ms */ /** * @} */ /** @defgroup RCC_Oscillator_Type Oscillator Type * @{ */ #define RCC_OSCILLATORTYPE_NONE 0x00000000U /*!< Oscillator configuration unchanged */ #define RCC_OSCILLATORTYPE_HSE 0x00000001U /*!< HSE to configure */ #define RCC_OSCILLATORTYPE_HSI 0x00000002U /*!< HSI to configure */ #define RCC_OSCILLATORTYPE_LSE 0x00000004U /*!< LSE to configure */ #define RCC_OSCILLATORTYPE_LSI 0x00000008U /*!< LSI to configure */ /** * @} */ /** @defgroup RCC_HSE_Config HSE Config * @{ */ #define RCC_HSE_BYPASS_DISABLE 0x00000000U /*!< Disable external clock source for HSE clock */ #define RCC_HSE_BYPASS_ENABLE ((uint32_t)(RCC_CR_HSEEN)) /*!< Enable external clock source for HSE clock */ /** * @} */ /** @defgroup RCC_LSE_Config LSE Config * @{ */ #define RCC_LSE_OFF 0x00000000U /*!< LSE clock deactivation */ #define RCC_LSE_ON RCC_BDCR_LSEON /*!< LSE clock activation */ #define RCC_LSE_BYPASS ((uint32_t)(RCC_BDCR_LSEBYP | RCC_BDCR_LSEON)) /*!< External clock source for LSE clock */ /** * @} */ /** @defgroup RCC_LSE_Driver LSE Config * @{ */ #define RCC_LSEDRIVE_LOWEST 0x00000000 /*!< LSE lowest driving capability */ #define RCC_LSEDRIVE_LOW RCC_ECSCR_LSE_DRIVER_0 /*!< LSE low drive capability */ #define RCC_LSEDRIVE_MEDIUM RCC_ECSCR_LSE_DRIVER_1 /*!< LSE medium drive capability */ #define RCC_LSEDRIVE_HIGH (RCC_ECSCR_LSE_DRIVER_0 | RCC_ECSCR_LSE_DRIVER_1) /*!< LSE high drive capability */ /** * @} */ /** @defgroup RCC_LSE_STARTUP LSE settling time Config * @{ */ #define RCC_LSE_STARTUP_NONE (RCC_ECSCR_LSE_STARTUP_1 | RCC_ECSCR_LSE_STARTUP_0) #define RCC_LSE_STARTUP_LOW RCC_ECSCR_LSE_STARTUP_0 #define RCC_LSE_STARTUP_MEDIUM 0x00000000U #define RCC_LSE_STARTUP_HIGH RCC_ECSCR_LSE_STARTUP_1 /** * @} */ /** @defgroup RCC_HSI_Config HSI Config * @{ */ #define RCC_HSI_OFF 0x00000000U /*!< HSI clock deactivation */ #define RCC_HSI_ON RCC_CR_HSION /*!< HSI clock activation */ /** * @} */ /** @defgroup RCC_HSI_Calibration HSI Calibration * @{ */ #define RCC_HSICALIBRATION_24MHz ((*(uint32_t *)(0x1FFF0100)) & 0xFFFF) /*!< 24MHz HSI calibration trimming value */ #if defined(RCC_HSI48M_SUPPORT) #define RCC_HSICALIBRATION_48MHz ((*(uint32_t *)(0x1FFF0104)) & 0xFFFF) /*!< 48MHz HSI calibration trimming value */ #endif /** * @} */ /** @defgroup RCC_HSI_Div HSI Div * @{ */ #define RCC_HSI_DIV1 0x00000000U /*!< HSI clock is not divided */ #define RCC_HSI_DIV2 RCC_CR_HSIDIV_0 /*!< HSI clock is divided by 2 */ #define RCC_HSI_DIV4 RCC_CR_HSIDIV_1 /*!< HSI clock is divided by 4 */ #define RCC_HSI_DIV8 (RCC_CR_HSIDIV_1|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 8 */ #define RCC_HSI_DIV16 RCC_CR_HSIDIV_2 /*!< HSI clock is divided by 16 */ #define RCC_HSI_DIV32 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 32 */ #define RCC_HSI_DIV64 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_1) /*!< HSI clock is divided by 64 */ #define RCC_HSI_DIV128 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_1|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 128 */ /** * @} */ /** @defgroup RCC_LSI_Config LSI Config * @{ */ #define RCC_LSI_OFF 0x00000000U /*!< LSI clock deactivation */ #define RCC_LSI_ON RCC_CSR_LSION /*!< LSI clock activation */ /** * @} */ /** @defgroup RCC_LSI_Calibration LSI Calibration * @{ */ #define RCC_LSICALIBRATION_32768Hz ((*(uint32_t *)(0x1FFF0144)) & 0x1FF) /*!< 32.768KHz LSI calibration trimming value */ #define RCC_LSICALIBRATION_38400Hz ((*(uint32_t *)(0x1FFF0148)) & 0x1FF) /*!< 38.4KHz LSI calibration trimming value */ /** * @} */ /** @defgroup RCC_System_Clock_Type System Clock Type * @{ */ #define RCC_CLOCKTYPE_SYSCLK 0x00000001U /*!< SYSCLK to configure */ #define RCC_CLOCKTYPE_HCLK 0x00000002U /*!< HCLK to configure */ #define RCC_CLOCKTYPE_PCLK1 0x00000004U /*!< PCLK1 to configure */ /** * @} */ /** @defgroup RCC_System_Clock_Source System Clock Source * @{ */ #define RCC_SYSCLKSOURCE_HSISYS 0x00000000U /*!< HSISYS selection as system clock */ #define RCC_SYSCLKSOURCE_HSE RCC_CFGR_SW_0 /*!< HSE selection as system clock */ #define RCC_SYSCLKSOURCE_LSI (RCC_CFGR_SW_1 | RCC_CFGR_SW_0) /*!< LSI selection as system clock */ #define RCC_SYSCLKSOURCE_LSE RCC_CFGR_SW_2 /*!< LSE selection as system clock */ /** * @} */ /** @defgroup RCC_System_Clock_Source_Status System Clock Source Status * @{ */ #define RCC_SYSCLKSOURCE_STATUS_HSISYS 0x00000000U /*!< HSISYS used as system clock */ #define RCC_SYSCLKSOURCE_STATUS_HSE RCC_CFGR_SWS_0 /*!< HSE used as system clock */ #define RCC_SYSCLKSOURCE_STATUS_LSI (RCC_CFGR_SWS_1 | RCC_CFGR_SWS_0) /*!< LSI used as system clock */ #define RCC_SYSCLKSOURCE_STATUS_LSE RCC_CFGR_SWS_2 /*!< LSE used as system clock */ /** * @} */ /** @defgroup RCC_AHB_Clock_Source AHB Clock Source * @{ */ #define RCC_SYSCLK_DIV1 0x00000000U /*!< SYSCLK not divided */ #define RCC_SYSCLK_DIV2 RCC_CFGR_HPRE_3 /*!< SYSCLK divided by 2 */ #define RCC_SYSCLK_DIV4 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 4 */ #define RCC_SYSCLK_DIV8 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 8 */ #define RCC_SYSCLK_DIV16 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 16 */ #define RCC_SYSCLK_DIV64 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2) /*!< SYSCLK divided by 64 */ #define RCC_SYSCLK_DIV128 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 128 */ #define RCC_SYSCLK_DIV256 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 256 */ #define RCC_SYSCLK_DIV512 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 512 */ /** * @} */ /** @defgroup RCC_APB1_Clock_Source APB Clock Source * @{ */ #define RCC_HCLK_DIV1 0x00000000U /*!< HCLK not divided */ #define RCC_HCLK_DIV2 RCC_CFGR_PPRE_2 /*!< HCLK divided by 2 */ #define RCC_HCLK_DIV4 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_0) /*!< HCLK divided by 4 */ #define RCC_HCLK_DIV8 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1) /*!< HCLK divided by 8 */ #define RCC_HCLK_DIV16 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1 | RCC_CFGR_PPRE_0) /*!< HCLK divided by 16 */ /** * @} */ /** @defgroup RCC_MCO_Index MCO Index * @{ */ #define RCC_MCO 0x00000000U #define RCC_MCO1 RCC_MCO /*!< Configure PA07 as the clock output.*/ #define RCC_MCO2 0x00000001U /*!< Configure PB01 as the clock output. */ /** * @} */ /** @defgroup RCC_MCO_Clock_Source MCO Clock Source * @{ */ #define RCC_MCOSOURCE_NOCLOCK 0x00000000U /*!< MCO output disabled, no clock on MCO */ #define RCC_MCOSOURCE_SYSCLK RCC_CFGR_MCOSEL_0 /*!< SYSCLK selection as MCO source */ #define RCC_MCOSOURCE_HSI (RCC_CFGR_MCOSEL_0| RCC_CFGR_MCOSEL_1) /*!< HSI selection as MCO source */ #define RCC_MCOSOURCE_HSE RCC_CFGR_MCOSEL_2 /*!< HSE selection as MCO source */ #define RCC_MCOSOURCE_LSI (RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSI selection as MCO source */ #define RCC_MCOSOURCE_LSE (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSE selection as MCO source */ /** * @} */ /** @defgroup RCC_MCOx_Clock_Prescaler MCO1 Clock Prescaler * @{ */ #define RCC_MCODIV_1 0x00000000U /*!< MCO not divided */ #define RCC_MCODIV_2 RCC_CFGR_MCOPRE_0 /*!< MCO divided by 2 */ #define RCC_MCODIV_4 RCC_CFGR_MCOPRE_1 /*!< MCO divided by 4 */ #define RCC_MCODIV_8 (RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 8 */ #define RCC_MCODIV_16 RCC_CFGR_MCOPRE_2 /*!< MCO divided by 16 */ #define RCC_MCODIV_32 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 32 */ #define RCC_MCODIV_64 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1) /*!< MCO divided by 64 */ #define RCC_MCODIV_128 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 128 */ /** * @} */ /** @defgroup RCC_Interrupt Interrupts * @{ */ #define RCC_IT_LSIRDY RCC_CIFR_LSIRDYF /*!< LSI Ready Interrupt flag */ #define RCC_IT_LSERDY RCC_CIFR_LSERDYF /*!< LSE Ready Interrupt flag */ #define RCC_IT_LSECSS RCC_CIFR_LSECSSF /*!< LSE Clock Security System Interrupt flag */ #define RCC_IT_HSIRDY RCC_CIFR_HSIRDYF /*!< HSI Ready Interrupt flag */ /** * @} */ /** @defgroup RCC_Flag Flags * Elements values convention: XXXYYYYYb * - YYYYY : Flag position in the register * - XXX : Register index * - 001: CR register * - 010: BDCR register * - 011: CSR register * @{ */ /* Flags in the CR register */ #define RCC_FLAG_HSIRDY ((CR_REG_INDEX << 5U) | RCC_CR_HSIRDY_Pos) /*!< HSI Ready flag */ /* Flags in the BDCR register */ #define RCC_FLAG_LSERDY ((BDCR_REG_INDEX << 5U) | RCC_BDCR_LSERDY_Pos) /*!< LSE Ready flag */ /* Flags in the CSR register */ #define RCC_FLAG_LSIRDY ((CSR_REG_INDEX << 5U) | RCC_CSR_LSIRDY_Pos) /*!< LSI Ready flag */ #define RCC_FLAG_OBLRST ((CSR_REG_INDEX << 5U) | RCC_CSR_OBLRSTF_Pos) /*!< Option Byte Loader reset flag */ #define RCC_FLAG_PINRST ((CSR_REG_INDEX << 5U) | RCC_CSR_PINRSTF_Pos) /*!< PIN reset flag */ #define RCC_FLAG_PWRRST ((CSR_REG_INDEX << 5U) | RCC_CSR_PWRRSTF_Pos) /*!< BOR or POR/PDR reset flag */ #define RCC_FLAG_SFTRST ((CSR_REG_INDEX << 5U) | RCC_CSR_SFTRSTF_Pos) /*!< Software Reset flag */ #define RCC_FLAG_IWDGRST ((CSR_REG_INDEX << 5U) | RCC_CSR_IWDGRSTF_Pos) /*!< Independent Watchdog reset flag */ /** * @} */ /** * @} */ /* Exported macros -----------------------------------------------------------*/ /** @defgroup RCC_Exported_Macros RCC Exported Macros * @{ */ /** @defgroup RCC_AHB_Peripheral_Clock_Enable_Disable AHB Peripheral Clock Enable Disable * @brief Enable or disable the AHB peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_FLASH_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_SRAM_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_CRC_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_FLASH_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN) #define __HAL_RCC_SRAM_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN) #define __HAL_RCC_CRC_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) /** * @} */ /** @defgroup RCC_IOPORT_Clock_Enable_Disable IOPORT Clock Enable Disable * @brief Enable or disable the IO Ports clock. * @note After reset, the IO ports clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_GPIOA_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_GPIOB_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_GPIOC_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_GPIOA_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) #define __HAL_RCC_GPIOB_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) #define __HAL_RCC_GPIOC_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN) /** * @} */ /** @defgroup RCC_APB1_Clock_Enable_Disable APB1 Peripheral Clock Enable Disable * @brief Enable or disable the APB1 peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_I2C_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_DBGMCU_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_PWR_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_PWREN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_LPTIM_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN); \ UNUSED(tmpreg); \ } while(0U) /** * @} */ /** @defgroup RCC_APB2_Clock_Enable_Disable APB2 Peripheral Clock Enable Disable * @brief Enable or disable the APB2 peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_SYSCFG_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_TIM1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_SPI1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_USART1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_TIM14_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_ADC_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN); \ UNUSED(tmpreg); \ } while(0U) #if defined(COMP1) #define __HAL_RCC_COMP1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN); \ UNUSED(tmpreg); \ } while(0U) #endif #if defined(COMP2) #define __HAL_RCC_COMP2_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN); \ UNUSED(tmpreg); \ } while(0U) #endif #define __HAL_RCC_I2C_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN) #define __HAL_RCC_DBGMCU_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN) #define __HAL_RCC_PWR_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_PWREN) #define __HAL_RCC_LPTIM_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN) #define __HAL_RCC_SYSCFG_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN) #define __HAL_RCC_TIM1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN) #define __HAL_RCC_SPI1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN) #define __HAL_RCC_USART1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN) #if defined(TIM14) #define __HAL_RCC_TIM14_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN) #endif #define __HAL_RCC_ADC_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN) #if defined(COMP1) #define __HAL_RCC_COMP1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN) #endif #if defined(COMP2) #define __HAL_RCC_COMP2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN) #endif /** * @} */ /** @defgroup RCC_AHB_Peripheral_Clock_Enabled_Disabled_Status AHB Peripheral Clock Enabled or Disabled Status * @brief Check whether the AHB peripheral clock is enabled or not. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_FLASH_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN) != RESET) #define __HAL_RCC_CRC_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) != RESET) #define __HAL_RCC_FLASH_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN) == RESET) #define __HAL_RCC_CRC_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) == RESET) /** * @} */ /** @defgroup RCC_IOPORT_Clock_Enabled_Disabled_Status IOPORT Clock Enabled or Disabled Status * @brief Check whether the IO Port clock is enabled or not. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_GPIOA_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) != RESET) #define __HAL_RCC_GPIOB_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) != RESET) #define __HAL_RCC_GPIOC_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN) != RESET) #define __HAL_RCC_GPIOA_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) == RESET) #define __HAL_RCC_GPIOB_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) == RESET) #define __HAL_RCC_GPIOC_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN) == RESET) /** * @} */ /** @defgroup RCC_APB1_Clock_Enabled_Disabled_Status APB1 Peripheral Clock Enabled or Disabled Status * @brief Check whether the APB1 peripheral clock is enabled or not. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_I2C_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN) != 0U) #define __HAL_RCC_DBGMCU_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN) != 0U) #define __HAL_RCC_PWR_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN) != 0U) #define __HAL_RCC_LPTIM_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN) != 0U) #define __HAL_RCC_I2C1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN) == 0U) #define __HAL_RCC_DBGMCU_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN) == 0U) #define __HAL_RCC_PWR_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN) == 0U) #define __HAL_RCC_LPTIM_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN) == 0U) /** * @} */ /** @defgroup RCC_APB2_Clock_Enabled_Disabled_Status APB2 Peripheral Clock Enabled or Disabled Status * @brief Check whether the APB2 peripheral clock is enabled or not. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_SYSCFG_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN) != 0U) #define __HAL_RCC_TIM1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN) != 0U) #define __HAL_RCC_SPI1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN) != 0U) #define __HAL_RCC_USART1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN) != 0U) #if defined(TIM14) #define __HAL_RCC_TIM14_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN) != 0U) #endif #define __HAL_RCC_ADC_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN) != 0U) #if defined(COMP1) #define __HAL_RCC_COMP1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN) != 0U) #endif #if defined(COMP2) #define __HAL_RCC_COMP2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN) != 0U) #endif #define __HAL_RCC_SYSCFG_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN) == 0U) #define __HAL_RCC_TIM1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN) == 0U) #define __HAL_RCC_SPI1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN) == 0U) #define __HAL_RCC_USART1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN) == 0U) #if defined(TIM14) #define __HAL_RCC_TIM14_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN) == 0U) #endif #define __HAL_RCC_ADC_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN) == 0U) #if defined(COMP1) #define __HAL_RCC_COMP1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN) == 0U) #endif #if defined(COMP2) #define __HAL_RCC_COMP2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN) == 0U) #endif /** * @} */ /** @defgroup RCC_AHB_Force_Release_Reset AHB Peripheral Force Release Reset * @brief Force or release AHB1 peripheral reset. * @{ */ #define __HAL_RCC_AHB_FORCE_RESET() WRITE_REG(RCC->AHBRSTR, 0xFFFFFFFFU) #define __HAL_RCC_FLASH_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_FLASHRST) #define __HAL_RCC_CRC_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_CRCRST) #define __HAL_RCC_AHB_RELEASE_RESET() WRITE_REG(RCC->AHBRSTR, 0x00000000U) #define __HAL_RCC_FLASH_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_FLASHRST) #define __HAL_RCC_CRC_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_CRCRST) /** * @} */ /** @defgroup RCC_IOPORT_Force_Release_Reset IOPORT Force Release Reset * @brief Force or release IO Port reset. * @{ */ #define __HAL_RCC_IOP_FORCE_RESET() WRITE_REG(RCC->IOPRSTR, 0xFFFFFFFFU) #define __HAL_RCC_GPIOA_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOARST) #define __HAL_RCC_GPIOB_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOBRST) #define __HAL_RCC_GPIOC_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOCRST) #define __HAL_RCC_IOP_RELEASE_RESET() WRITE_REG(RCC->IOPRSTR, 0x00000000U) #define __HAL_RCC_GPIOA_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOARST) #define __HAL_RCC_GPIOB_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOBRST) #define __HAL_RCC_GPIOC_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOCRST) /** * @} */ /** @defgroup RCC_APB1_Force_Release_Reset APB1 Peripheral Force Release Reset * @brief Force or release APB1 peripheral reset. * @{ */ #define __HAL_RCC_APB1_FORCE_RESET() WRITE_REG(RCC->APBRSTR1, 0xFFFFFFFFU) #define __HAL_RCC_I2C_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2CRST) #define __HAL_RCC_DBGMCU_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_DBGRST) #define __HAL_RCC_PWR_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_PWRRST) #define __HAL_RCC_LPTIM_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPTIMRST) #define __HAL_RCC_APB1_RELEASE_RESET() WRITE_REG(RCC->APBRSTR1, 0x00000000U) #define __HAL_RCC_I2C_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2CRST) #define __HAL_RCC_DBGMCU_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_DBGRST) #define __HAL_RCC_PWR_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_PWRRST) #define __HAL_RCC_LPTIM_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPTIMRST) /** * @} */ /** @defgroup RCC_APB2_Force_Release_Reset APB2 Peripheral Force Release Reset * @brief Force or release APB2 peripheral reset. * @{ */ #define __HAL_RCC_APB2_FORCE_RESET() WRITE_REG(RCC->APBRSTR2, 0xFFFFFFFFU) #define __HAL_RCC_SYSCFG_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SYSCFGRST) #define __HAL_RCC_TIM1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM1RST) #define __HAL_RCC_SPI1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SPI1RST) #define __HAL_RCC_USART1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_USART1RST) #define __HAL_RCC_TIM14_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM14RST) #define __HAL_RCC_ADC_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_ADCRST) #if defined(COMP1) #define __HAL_RCC_COMP1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_COMP1RST) #endif #if defined(COMP2) #define __HAL_RCC_COMP2_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_COMP2RST) #endif #define __HAL_RCC_APB2_RELEASE_RESET() WRITE_REG(RCC->APBRSTR2, 0x00U) #define __HAL_RCC_SYSCFG_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SYSCFGRST) #define __HAL_RCC_TIM1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM1RST) #define __HAL_RCC_SPI1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SPI1RST) #define __HAL_RCC_USART1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_USART1RST) #define __HAL_RCC_TIM14_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM14RST) #define __HAL_RCC_ADC_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_ADCRST) #if defined(COMP1) #define __HAL_RCC_COMP1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_COMP1RST) #endif #if defined(COMP2) #define __HAL_RCC_COMP2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_COMP2RST) #endif /** * @} */ /** @defgroup RCC_Clock_Configuration RCC Clock Configuration * @{ */ /** @brief Macros to enable the Internal High Speed oscillator (HSI). * @note The HSI is stopped by hardware when entering STOP and STANDBY modes. * It is used (enabled by hardware) as system clock source after startup * from Reset, wakeup from STOP and STANDBY mode, or in case of failure * of the HSE used directly or indirectly as system clock (if the Clock * Security System CSS is enabled). * @note After enabling the HSI, the application software should wait on HSIRDY * flag to be set indicating that HSI clock is stable and can be used as * system clock source. * This parameter can be: ENABLE or DISABLE. * @retval None */ #define __HAL_RCC_HSI_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSION) /** @brief Macros to disable the Internal High Speed oscillator (HSI). * @note HSI can not be stopped if it is used as system clock source. In this case, * you have to select another source of the system clock then stop the HSI. * @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator * clock cycles. * @retval None */ #define __HAL_RCC_HSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSION) /** @brief Macro to adjust the Internal High Speed oscillator (HSI) calibration value. * @note The calibration is used to compensate for the variations in voltage * and temperature that influence the frequency of the internal HSI RC. * @param __HSICALIBRATIONVALUE__ specifies the calibration trimming value * (default is RCC_HSICALIBRATION_DEFAULT). * This parameter must be a number between 0 and 127. * @retval None */ #define __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(__HSICALIBRATIONVALUE__) \ MODIFY_REG(RCC->ICSCR, (RCC_ICSCR_HSI_FS_Msk|RCC_ICSCR_HSI_TRIM), (uint32_t)(__HSICALIBRATIONVALUE__) << RCC_ICSCR_HSI_TRIM_Pos) /** @brief Macro to configure the HSISYS clock. * @param __HSIDIV__ specifies the HSI division factor. * This parameter can be one of the following values: * @arg @ref RCC_HSI_DIV1 HSI clock source is divided by 1 * @arg @ref RCC_HSI_DIV2 HSI clock source is divided by 2 * @arg @ref RCC_HSI_DIV4 HSI clock source is divided by 4 * @arg @ref RCC_HSI_DIV8 HSI clock source is divided by 8 * @arg @ref RCC_HSI_DIV16 HSI clock source is divided by 16 * @arg @ref RCC_HSI_DIV32 HSI clock source is divided by 32 * @arg @ref RCC_HSI_DIV64 HSI clock source is divided by 64 * @arg @ref RCC_HSI_DIV128 HSI clock source is divided by 128 */ #define __HAL_RCC_HSI_CONFIG(__HSIDIV__) \ MODIFY_REG(RCC->CR, RCC_CR_HSIDIV, (__HSIDIV__)) /** @brief Macros to enable or disable the Internal Low Speed oscillator (LSI). * @note After enabling the LSI, the application software should wait on * LSIRDY flag to be set indicating that LSI clock is stable and can * be used to clock the IWDG. * @note LSI can not be disabled if the IWDG is running. * @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator * clock cycles. * @retval None */ #define __HAL_RCC_LSI_ENABLE() SET_BIT(RCC->CSR, RCC_CSR_LSION) #define __HAL_RCC_LSI_DISABLE() CLEAR_BIT(RCC->CSR, RCC_CSR_LSION) /** @brief Macro to adjust the Internal Low Speed oscillator (LSI) calibration value. * @param __LSICALIBRATIONVALUE__ specifies the calibration trimming value. * This parameter can be one of the following values: * @arg @ref RCC_LSICALIBRATION_32768Hz * @arg @ref RCC_LSICALIBRATION_38400Hz * @retval None */ #define __HAL_RCC_LSI_CALIBRATIONVALUE_ADJUST(__LSICALIBRATIONVALUE__) \ MODIFY_REG(RCC->ICSCR, RCC_ICSCR_LSI_TRIM, (__LSICALIBRATIONVALUE__ << RCC_ICSCR_LSI_TRIM_Pos)) /** * @brief Macro to configure the External High Speed oscillator (HSE). * @param __STATE__ specifies the new state of the HSE. * This parameter can be one of the following values: * @arg @ref RCC_HSE_BYPASS_DISABLE Disable HSE oscillator bypassed with external clock. * @arg @ref RCC_HSE_BYPASS_ENABLE Enable HSE oscillator bypassed with external clock. * @retval None */ #define __HAL_RCC_HSE_CONFIG(__STATE__) \ do { \ if((__STATE__) == RCC_HSE_BYPASS_ENABLE) \ { \ SET_BIT(RCC->CR, RCC_CR_HSEEN); \ } \ else \ { \ CLEAR_BIT(RCC->CR, RCC_CR_HSEEN); \ } \ } while(0U) /** * @brief Macro to configure the External Low Speed oscillator (LSE). * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not * supported by this macro. User should request a transition to LSE Off * first and then LSE On or LSE Bypass. * @note As the LSE is in the Backup domain and write access is denied to * this domain after reset, you have to enable write access using * HAL_PWR_EnableBkUpAccess() function before to configure the LSE * (to be done once after reset). * @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_BYPASS), the application * software should wait on LSERDY flag to be set indicating that LSE clock * is stable. * @param __STATE__ specifies the new state of the LSE. * This parameter can be one of the following values: * @arg @ref RCC_LSE_OFF Turn OFF the LSE oscillator, LSERDY flag goes low after * 6 LSE oscillator clock cycles. * @arg @ref RCC_LSE_ON Turn ON the LSE oscillator. * @arg @ref RCC_LSE_BYPASS LSE oscillator bypassed with external clock. * @retval None */ #define __HAL_RCC_LSE_CONFIG(__STATE__) \ do { \ if((__STATE__) == RCC_LSE_ON) \ { \ SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ } \ else if((__STATE__) == RCC_LSE_BYPASS) \ { \ SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \ SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ } \ else \ { \ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \ } \ } while(0U) /** @brief Macro to configure the LSE settling time. * @param __TIME__ specifies the LSE settling time. * This parameter can be one of the following values: * @arg @ref RCC_LSE_STARTUP_NONE Direct output regardless of stabilization time. * @arg @ref RCC_LSE_STARTUP_LOW It is output after 2048 LSE clock cycles. If LSEBYP is set, it is output after 1024 clock cycles. * @arg @ref RCC_LSE_STARTUP_MEDIUM It is output after 4096 LSE clock cycles. If LSEBYP is set, it is output after 2048 clock cycles. * @arg @ref RCC_LSE_STARTUP_HIGH It is output after 8192 LSE clock cycles. If LSEBYP is set, it is output after 4096 clock cycles. */ #define __HAL_RCC_LSE_STARTUP_DELAY(__TIME__) MODIFY_REG(RCC->ECSCR, RCC_ECSCR_LSE_STARTUP ,(__TIME__)) /** * @brief Macro to configure the system clock source. * @param __SYSCLKSOURCE__ specifies the system clock source. * This parameter can be one of the following values: * @arg @ref RCC_SYSCLKSOURCE_HSISYS HSISYS oscillator is used as system clock source. * @arg @ref RCC_SYSCLKSOURCE_HSE HSE oscillator is used as system clock source. * @arg @ref RCC_SYSCLKSOURCE_LSI LSI oscillator is used as system clock source. * @arg @ref RCC_SYSCLKSOURCE_LSE LSE oscillator is used as system clock source. * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @retval None */ #define __HAL_RCC_SYSCLK_CONFIG(__SYSCLKSOURCE__) \ MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, (__SYSCLKSOURCE__)) /** @brief Macro to get the clock source used as system clock. * @retval The clock source used as system clock. The returned value can be one * of the following: * @arg @ref RCC_SYSCLKSOURCE_STATUS_HSISYS HSISYS used as system clock. * @arg @ref RCC_SYSCLKSOURCE_STATUS_HSE HSE used as system clock. * @arg @ref RCC_SYSCLKSOURCE_STATUS_LSI LSI used as system clock source. * @arg @ref RCC_SYSCLKSOURCE_STATUS_LSE LSE used as system clock source. * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. */ #define __HAL_RCC_GET_SYSCLK_SOURCE() (RCC->CFGR & RCC_CFGR_SWS) /** * @brief Macro to configure the External Low Speed oscillator (LSE) drive capability. * @note As the LSE is in the Backup domain and write access is denied to * this domain after reset, you have to enable write access using * HAL_PWR_EnableBkUpAccess() function before to configure the LSE * (to be done once after reset). * @param __LSEDRIVE__ specifies the new state of the LSE drive capability. * This parameter can be one of the following values: * @arg @ref RCC_LSEDRIVE_LOWEST LSE oscillator lowest drive capability. * @arg @ref RCC_LSEDRIVE_LOW LSE oscillator low drive capability. * @arg @ref RCC_LSEDRIVE_MEDIUM LSE oscillator medium low drive capability. * @arg @ref RCC_LSEDRIVE_HIGH LSE oscillator high drive capability. * @retval None */ #define __HAL_RCC_LSEDRIVE_CONFIG(__LSEDRIVE__) \ MODIFY_REG(RCC->ECSCR, RCC_ECSCR_LSE_DRIVER, (uint32_t)(__LSEDRIVE__)) /** @brief Macro to configure the MCO clock. * @param __MCOCLKSOURCE__ specifies the MCO clock source. * This parameter can be one of the following values: * @arg @ref RCC_MCOSOURCE_NOCLOCK MCO output disabled * @arg @ref RCC_MCOSOURCE_SYSCLK System clock selected as MCO source * @arg @ref RCC_MCOSOURCE_HSI HSI clock selected as MCO source * @arg @ref RCC_MCOSOURCE_HSE HSE clock selected as MCO sourcee * @arg @ref RCC_MCOSOURCE_LSI LSI clock selected as MCO source * @arg @ref RCC_MCOSOURCE_LSE LSE clock selected as MCO source * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @param __MCODIV__ specifies the MCO clock prescaler. * This parameter can be one of the following values: * @arg @ref RCC_MCODIV_1 MCO clock source is divided by 1 * @arg @ref RCC_MCODIV_2 MCO clock source is divided by 2 * @arg @ref RCC_MCODIV_4 MCO clock source is divided by 4 * @arg @ref RCC_MCODIV_8 MCO clock source is divided by 8 * @arg @ref RCC_MCODIV_16 MCO clock source is divided by 16 * @arg @ref RCC_MCODIV_32 MCO clock source is divided by 32 * @arg @ref RCC_MCODIV_64 MCO clock source is divided by 64 * @arg @ref RCC_MCODIV_128 MCO clock source is divided by 128 */ #define __HAL_RCC_MCO1_CONFIG(__MCOCLKSOURCE__, __MCODIV__) \ MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), ((__MCOCLKSOURCE__) | (__MCODIV__))) /** * @} */ /** @defgroup RCC_Flags_Interrupts_Management Flags Interrupts Management * @brief macros to manage the specified RCC Flags and interrupts. * @{ */ /** @brief Enable RCC interrupt. * @param __INTERRUPT__ specifies the RCC interrupt sources to be enabled. * This parameter can be any combination of the following values: * @arg @ref RCC_IT_LSIRDY LSI ready interrupt * @arg @ref RCC_IT_LSERDY LSE ready interrupt * @arg @ref RCC_IT_HSIRDY HSI ready interrupt * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @retval None */ #define __HAL_RCC_ENABLE_IT(__INTERRUPT__) SET_BIT(RCC->CIER, (__INTERRUPT__)) /** @brief Disable RCC interrupt. * @param __INTERRUPT__ specifies the RCC interrupt sources to be disabled. * This parameter can be any combination of the following values: * @arg @ref RCC_IT_LSIRDY LSI ready interrupt * @arg @ref RCC_IT_LSERDY LSE ready interrupt * @arg @ref RCC_IT_HSIRDY HSI ready interrupt * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @retval None */ #define __HAL_RCC_DISABLE_IT(__INTERRUPT__) CLEAR_BIT(RCC->CIER, (__INTERRUPT__)) /** @brief Clear RCC interrupt pending bits. * @param __INTERRUPT__ specifies the interrupt pending bit to clear. * This parameter can be any combination of the following values: * @arg @ref RCC_IT_LSIRDY LSI ready interrupt * @arg @ref RCC_IT_LSERDY LSE ready interrupt * @arg @ref RCC_IT_HSIRDY HSI ready interrupt * @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @retval None */ #define __HAL_RCC_CLEAR_IT(__INTERRUPT__) (RCC->CICR = (__INTERRUPT__)) /** @brief Check whether the RCC interrupt has occurred or not. * @param __INTERRUPT__ specifies the RCC interrupt source to check. * This parameter can be one of the following values: * @arg @ref RCC_IT_LSIRDY LSI ready interrupt * @arg @ref RCC_IT_LSERDY LSE ready interrupt * @arg @ref RCC_IT_HSIRDY HSI ready interrupt * @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @retval The new state of __INTERRUPT__ (TRUE or FALSE). */ #define __HAL_RCC_GET_IT(__INTERRUPT__) ((RCC->CIFR & (__INTERRUPT__)) == (__INTERRUPT__)) /** @brief Set RMVF bit to clear the reset flags. * The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PWRRST, * RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST. * @note Depending on the device and software package, some flag bits may not be available. * Refer to the device data sheet for flag bit availability. * @retval None */ #define __HAL_RCC_CLEAR_RESET_FLAGS() (RCC->CSR |= RCC_CSR_RMVF) /** @brief Check whether the selected RCC flag is set or not. * @param __FLAG__ specifies the flag to check. * This parameter can be one of the following values: * @arg @ref RCC_FLAG_HSIRDY HSI oscillator clock ready * @arg @ref RCC_FLAG_LSERDY LSE oscillator clock ready * @arg @ref RCC_FLAG_LSIRDY LSI oscillator clock ready * @arg @ref RCC_FLAG_PWRRST BOR or POR/PDR reset * @arg @ref RCC_FLAG_OBLRST OBLRST reset * @arg @ref RCC_FLAG_PINRST Pin reset * @arg @ref RCC_FLAG_SFTRST Software reset * @arg @ref RCC_FLAG_IWDGRST Independent Watchdog reset * @note Depending on the device and software package, some flag bits may not be available. * Refer to the device data sheet for flag bit availability. * @retval The new state of __FLAG__ (TRUE or FALSE). */ #define __HAL_RCC_GET_FLAG(__FLAG__) (((((((__FLAG__) >> 5U) == CR_REG_INDEX) ? RCC->CR : \ ((((__FLAG__) >> 5U) == BDCR_REG_INDEX) ? RCC->BDCR : \ ((((__FLAG__) >> 5U) == CSR_REG_INDEX) ? RCC->CSR : RCC->CIFR))) & \ (1U << ((__FLAG__) & RCC_FLAG_MASK))) != RESET) \ ? 1U : 0U) /** * @} */ /** * @} */ /* Include RCC HAL Extended module */ #include "py32f002b_hal_rcc_ex.h" /* Exported functions --------------------------------------------------------*/ /** @addtogroup RCC_Exported_Functions * @{ */ /** @addtogroup RCC_Exported_Functions_Group1 * @{ */ /* Initialization and de-initialization functions ******************************/ HAL_StatusTypeDef HAL_RCC_DeInit(void); HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct); HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency); /** * @} */ /** @addtogroup RCC_Exported_Functions_Group2 * @{ */ /* Peripheral Control functions ************************************************/ void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv); void HAL_RCC_EnableLSECSS(void); void HAL_RCC_DisableLSECSS(void); void HAL_RCC_LSECSSCallback(void); uint32_t HAL_RCC_GetSysClockFreq(void); uint32_t HAL_RCC_GetHCLKFreq(void); uint32_t HAL_RCC_GetPCLK1Freq(void); void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct); void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency); /* LSE & HSE CSS NMI IRQ handler */ void HAL_RCC_NMI_IRQHandler(void); /* User Callbacks in non blocking mode (IT mode) */ void HAL_RCC_CSSCallback(void); /** * @} */ /** * @} */ /** * @} */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __PY32F002B_HAL_RCC_H */ /************************ (C) COPYRIGHT Puya *****END OF FILE****/