/** ****************************************************************************** * @file py32f002b_ll_rcc.h * @author MCU Application Team * @brief Header file of RCC LL module. ****************************************************************************** * @attention * *

© Copyright (c) 2023 Puya Semiconductor Co. * All rights reserved.

* * This software component is licensed by Puya under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** * @attention * *

© Copyright (c) 2016 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __PY32F002B_LL_RCC_H #define __PY32F002B_LL_RCC_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "py32f0xx.h" /** @addtogroup PY32F002B_LL_Driver * @{ */ #if defined(RCC) /** @defgroup RCC_LL RCC * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /** @defgroup RCC_LL_Private_Variables RCC Private Variables * @{ */ /** * @} */ /* Private constants ---------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup RCC_LL_Private_Macros RCC Private Macros * @{ */ /** * @} */ #endif /*USE_FULL_LL_DRIVER*/ /* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup RCC_LL_Exported_Types RCC Exported Types * @{ */ /** @defgroup LL_ES_CLOCK_FREQ Clocks Frequency Structure * @{ */ /** * @brief RCC Clocks Frequency Structure */ typedef struct { uint32_t SYSCLK_Frequency; /*!< SYSCLK clock frequency */ uint32_t HCLK_Frequency; /*!< HCLK clock frequency */ uint32_t PCLK1_Frequency; /*!< PCLK1 clock frequency */ } LL_RCC_ClocksTypeDef; /** * @} */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /* Exported constants --------------------------------------------------------*/ /** @defgroup RCC_LL_Exported_Constants RCC Exported Constants * @{ */ /** @defgroup RCC_LL_EC_OSC_VALUES Oscillator Values adaptation * @brief Defines used to adapt values of different oscillators * @note These values could be modified in the user environment according to * HW set-up. * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE 24000000U /*!< Value of the HSE oscillator in Hz */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE 24000000U /*!< Value of the HSI oscillator in Hz */ #endif /* HSI_VALUE */ #if defined(RCC_LSE_SUPPORT) #if !defined (LSE_VALUE) #define LSE_VALUE 32768U /*!< Value of the LSE oscillator in Hz */ #endif /* LSE_VALUE */ #endif #if !defined (LSI_VALUE) #define LSI_VALUE 32768U /*!< Value of the LSI oscillator in Hz */ #endif /* LSI_VALUE */ /** * @} */ /** @defgroup RCC_LL_EC_CLEAR_FLAG Clear Flags Defines * @brief Flags defines which can be used with LL_RCC_WriteReg function * @{ */ #define LL_RCC_CICR_LSIRDYC RCC_CICR_LSIRDYC /*!< LSI Ready Interrupt Clear */ #define LL_RCC_CICR_HSIRDYC RCC_CICR_HSIRDYC /*!< HSI Ready Interrupt Clear */ #if defined(RCC_LSE_SUPPORT) #define LL_RCC_CICR_LSERDYC RCC_CICR_LSERDYC /*!< LSE Ready Interrupt Clear */ #define LL_RCC_CICR_LSECSSC RCC_CICR_LSECSSC /*!< LSE Clock Security System Interrupt Clear */ #endif /** * @} */ /** @defgroup RCC_LL_EC_GET_FLAG Get Flags Defines * @brief Flags defines which can be used with LL_RCC_ReadReg function * @{ */ #define LL_RCC_CIFR_LSIRDYF RCC_CIFR_LSIRDYF /*!< LSI Ready Interrupt flag */ #define LL_RCC_CIFR_HSIRDYF RCC_CIFR_HSIRDYF /*!< HSI Ready Interrupt flag */ #if defined(RCC_LSE_SUPPORT) #define LL_RCC_CIFR_LSERDYF RCC_CIFR_LSERDYF /*!< LSE Ready Interrupt flag */ #define LL_RCC_CIFR_LSECSSF RCC_CIFR_LSECSSF /*!< LSE Clock Security System Interrupt flag */ #endif #define LL_RCC_CSR_OBLRSTF RCC_CSR_OBLRSTF /*!< OBL reset flag */ #define LL_RCC_CSR_PINRSTF RCC_CSR_PINRSTF /*!< PIN reset flag */ #define LL_RCC_CSR_SFTRSTF RCC_CSR_SFTRSTF /*!< Software Reset flag */ #define LL_RCC_CSR_IWDGRSTF RCC_CSR_IWDGRSTF /*!< Independent Watchdog reset flag */ #define LL_RCC_CSR_PWRRSTF RCC_CSR_PWRRSTF /*!< BOR or POR/PDR reset flag */ /** * @} */ /** @defgroup RCC_LL_EC_IT IT Defines * @brief IT defines which can be used with LL_RCC_ReadReg and LL_RCC_WriteReg functions * @{ */ #define LL_RCC_CIER_LSIRDYIE RCC_CIER_LSIRDYIE /*!< LSI Ready Interrupt Enable */ #if defined(RCC_LSE_SUPPORT) #define LL_RCC_CIER_LSERDYIE RCC_CIER_LSERDYIE /*!< LSE Ready Interrupt Enable */ #endif #define LL_RCC_CIER_HSIRDYIE RCC_CIER_HSIRDYIE /*!< HSI Ready Interrupt Enable */ /** * @} */ #if defined(RCC_LSE_SUPPORT) /** @defgroup RCC_LL_EC_LSEDRIVE LSE oscillator drive capability * @{ */ #define LL_RCC_LSEDRIVE_CLOSE 0x00000000 /*!< LSE driving capability closed */ #define LL_RCC_LSEDRIVE_LOW RCC_ECSCR_LSE_DRIVER_0 /*!< LSE lower driving capability */ #define LL_RCC_LSEDRIVE_MEDIUM RCC_ECSCR_LSE_DRIVER_1 /*!< LSE medium driving capability */ #define LL_RCC_LSEDRIVE_HIGH RCC_ECSCR_LSE_DRIVER /*!< LSE higher driving capability */ /** * @} */ /** @defgroup RCC_LL_EC_LSESTARTUP LSE oscillator startup time * @{ */ #define LL_RCC_LSESTARTUP_DELAY_LOW RCC_ECSCR_LSE_STARTUP /*!< LSE Startup none delay */ #define LL_RCC_LSESTARTUP_DELAY_MEDIUM RCC_ECSCR_LSE_STARTUP_0 /*!< LSE Startup short delay */ #define LL_RCC_LSESTARTUP_DELAY_HIGH 0x00000000 /*!< LSE Startup long delay */ #define LL_RCC_LSESTARTUP_DELAY_VERY_HIGH RCC_ECSCR_LSE_STARTUP_1 /*!< LSE Startup very long delay */ /** * @} */ #endif #if defined(RCC_BDCR_LSCOSEL) /** @defgroup RCC_LL_EC_LSCO_CLKSOURCE LSCO Selection * @{ */ #define LL_RCC_LSCO_CLKSOURCE_LSI 0x00000000U /*!< LSI selection for low speed clock */ #define LL_RCC_LSCO_CLKSOURCE_LSE RCC_BDCR_LSCOSEL /*!< LSE selection for low speed clock */ #endif /** * @} */ /** @defgroup RCC_LL_EC_SYS_CLKSOURCE System clock switch * @{ */ #define LL_RCC_SYS_CLKSOURCE_HSISYS 0x00000000U /*!< HSISYS selection as system clock */ #define LL_RCC_SYS_CLKSOURCE_HSE RCC_CFGR_SW_0 /*!< HSE selection as system clock */ #define LL_RCC_SYS_CLKSOURCE_LSI (RCC_CFGR_SW_1 | RCC_CFGR_SW_0) /*!< LSI selection used as system clock */ #if defined(RCC_LSE_SUPPORT) #define LL_RCC_SYS_CLKSOURCE_LSE RCC_CFGR_SW_2 /*!< LSE selection used as system clock */ #endif /** * @} */ /** @defgroup RCC_LL_EC_SYS_CLKSOURCE_STATUS System clock switch status * @{ */ #define LL_RCC_SYS_CLKSOURCE_STATUS_HSISYS 0x00000000U /*!< HSISYS used as system clock */ #define LL_RCC_SYS_CLKSOURCE_STATUS_HSE RCC_CFGR_SWS_0 /*!< HSE used as system clock */ #define LL_RCC_SYS_CLKSOURCE_STATUS_LSI (RCC_CFGR_SWS_1 | RCC_CFGR_SWS_0) /*!< LSI used as system clock */ #if defined(RCC_LSE_SUPPORT) #define LL_RCC_SYS_CLKSOURCE_STATUS_LSE RCC_CFGR_SWS_2 /*!< LSE used as system clock */ #endif /** * @} */ /** @defgroup RCC_LL_EC_SYSCLK_DIV AHB prescaler * @{ */ #define LL_RCC_SYSCLK_DIV_1 0x00000000U /*!< SYSCLK not divided */ #define LL_RCC_SYSCLK_DIV_2 RCC_CFGR_HPRE_3 /*!< SYSCLK divided by 2 */ #define LL_RCC_SYSCLK_DIV_4 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 4 */ #define LL_RCC_SYSCLK_DIV_8 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 8 */ #define LL_RCC_SYSCLK_DIV_16 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 16 */ #define LL_RCC_SYSCLK_DIV_64 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2) /*!< SYSCLK divided by 64 */ #define LL_RCC_SYSCLK_DIV_128 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 128 */ #define LL_RCC_SYSCLK_DIV_256 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 256 */ #define LL_RCC_SYSCLK_DIV_512 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 512 */ /** * @} */ /** @defgroup RCC_LL_EC_APB1_DIV APB1 low-speed prescaler (APB1) * @{ */ #define LL_RCC_APB1_DIV_1 0x00000000U /*!< HCLK not divided */ #define LL_RCC_APB1_DIV_2 RCC_CFGR_PPRE_2 /*!< HCLK divided by 2 */ #define LL_RCC_APB1_DIV_4 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_0) /*!< HCLK divided by 4 */ #define LL_RCC_APB1_DIV_8 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1) /*!< HCLK divided by 8 */ #define LL_RCC_APB1_DIV_16 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1 | RCC_CFGR_PPRE_0) /*!< HCLK divided by 16 */ /** * @} */ /** @defgroup RCC_LL_EC_HSI_DIV HSI division factor * @{ */ #define LL_RCC_HSI_DIV_1 0x00000000U /*!< HSI not divided */ #define LL_RCC_HSI_DIV_2 RCC_CR_HSIDIV_0 /*!< HSI divided by 2 */ #define LL_RCC_HSI_DIV_4 RCC_CR_HSIDIV_1 /*!< HSI divided by 4 */ #define LL_RCC_HSI_DIV_8 (RCC_CR_HSIDIV_1 | RCC_CR_HSIDIV_0) /*!< HSI divided by 8 */ #define LL_RCC_HSI_DIV_16 RCC_CR_HSIDIV_2 /*!< HSI divided by 16 */ #define LL_RCC_HSI_DIV_32 (RCC_CR_HSIDIV_2 | RCC_CR_HSIDIV_0) /*!< HSI divided by 32 */ #define LL_RCC_HSI_DIV_64 (RCC_CR_HSIDIV_2 | RCC_CR_HSIDIV_1) /*!< HSI divided by 64 */ #define LL_RCC_HSI_DIV_128 RCC_CR_HSIDIV /*!< HSI divided by 128 */ /** * @} */ /** @defgroup RCC_LL_EC_MCO1SOURCE MCO1 SOURCE selection * @{ */ #define LL_RCC_MCO1SOURCE_NOCLOCK 0x00000000U /*!< MCO output disabled, no clock on MCO */ #define LL_RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCOSEL_0 /*!< SYSCLK selection as MCO1 source */ #define LL_RCC_MCO1SOURCE_HSI (RCC_CFGR_MCOSEL_0| RCC_CFGR_MCOSEL_1) /*!< HSI selection as MCO1 source */ #define LL_RCC_MCO1SOURCE_HSE RCC_CFGR_MCOSEL_2 /*!< HSE selection as MCO1 source */ #define LL_RCC_MCO1SOURCE_LSI (RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSI selection as MCO1 source */ #if defined(RCC_LSE_SUPPORT) #define LL_RCC_MCO1SOURCE_LSE (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSE selection as MCO1 source */ #endif /** * @} */ /** @defgroup RCC_LL_EC_MCO Peripheral MCO get clock source * @{ */ #define LL_RCC_MCO1_CLKSOURCE RCC_CFGR_MCOSEL /*!< MCO1 Clock source selection */ /** * @} */ /** @defgroup RCC_LL_EC_MCO1_DIV MCO1 prescaler * @{ */ #define LL_RCC_MCO1_DIV_1 0x00000000U /*!< MCO1 not divided */ #define LL_RCC_MCO1_DIV_2 RCC_CFGR_MCOPRE_0 /*!< MCO1 divided by 2 */ #define LL_RCC_MCO1_DIV_4 RCC_CFGR_MCOPRE_1 /*!< MCO1 divided by 4 */ #define LL_RCC_MCO1_DIV_8 (RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO1 divided by 8 */ #define LL_RCC_MCO1_DIV_16 RCC_CFGR_MCOPRE_2 /*!< MCO1 divided by 16 */ #define LL_RCC_MCO1_DIV_32 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_0) /*!< MCO1 divided by 32 */ #define LL_RCC_MCO1_DIV_64 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1) /*!< MCO1 divided by 64 */ #define LL_RCC_MCO1_DIV_128 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO1 divided by 128 */ /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup RCC_LL_EC_PERIPH_FREQUENCY Peripheral clock frequency * @{ */ #define LL_RCC_PERIPH_FREQUENCY_NO 0x00000000U /*!< No clock enabled for the peripheral */ #define LL_RCC_PERIPH_FREQUENCY_NA 0xFFFFFFFFU /*!< Frequency cannot be provided as external clock */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ #if defined(COMP1) /** @defgroup RCC_LL_EC_COMPx_CLKSOURCE Peripheral COMP clock source selection * @{ */ #define LL_RCC_COMP1_CLKSOURCE_PCLK1 (RCC_CCIPR_COMP1SEL | (0x00000000U >> 8U)) /*!< PCLK1 selected as COMP1 clock */ #define LL_RCC_COMP1_CLKSOURCE_LSC (RCC_CCIPR_COMP1SEL | (RCC_CCIPR_COMP1SEL >> 8U)) /*!< LSC selected as COMP1 clock */ #if defined(COMP2) #define LL_RCC_COMP2_CLKSOURCE_PCLK1 (RCC_CCIPR_COMP2SEL | (0x00000000U >> 8U)) /*!< PCLK1 selected as COMP2 clock */ #define LL_RCC_COMP2_CLKSOURCE_LSC (RCC_CCIPR_COMP2SEL | (RCC_CCIPR_COMP2SEL >> 8U)) /*!< LSC selected as COMP2 clock */ #endif /** * @} */ #endif /* COMP1 && COMP2 */ #if defined(RCC_CCIPR_LPTIMSEL) /** @defgroup RCC_LL_EC_LPTIMx_CLKSOURCE Peripheral LPTIM clock source selection * @{ */ #define LL_RCC_LPTIM1_CLKSOURCE_NONE RCC_CCIPR_LPTIMSEL_1 /*!< No clock used as LPTIM1 clock */ #define LL_RCC_LPTIM1_CLKSOURCE_PCLK1 0x00000000U /*!< PCLK1 selected as LPTIM1 clock */ #define LL_RCC_LPTIM1_CLKSOURCE_LSI RCC_CCIPR_LPTIMSEL_0 /*!< LSI selected as LPTIM1 clock */ #if defined(RCC_LSE_SUPPORT) #define LL_RCC_LPTIM1_CLKSOURCE_LSE RCC_CCIPR_LPTIMSEL /*!< LSE selected as LPTIM1 clock */ #endif /** * @} */ #endif /* RCC_CCIPR_LPTIMSEL */ #if defined(COMP1) /** @defgroup RCC_LL_EC_COMP Peripheral COMP get clock source * @{ */ #define LL_RCC_COMP1_CLKSOURCE RCC_CCIPR_COMP1SEL /*!< COMP1 Clock source selection */ #if defined(COMP2) #define LL_RCC_COMP2_CLKSOURCE RCC_CCIPR_COMP2SEL /*!< COMP2 Clock source selection */ #endif /* COMP2 */ /** * @} */ #endif /* COMP1 */ #if defined(RCC_CCIPR_LPTIMSEL) /** @defgroup RCC_LL_EC_LPTIM Peripheral LPTIM get clock source * @{ */ #define LL_RCC_LPTIM1_CLKSOURCE RCC_CCIPR_LPTIMSEL /*!< LPTIM1 Clock source selection */ /** * @} */ #endif /* RCC_CCIPR_LPTIMSEL */ /** @defgroup RCC_HSI_EC_Calibration HSI Calibration * @{ */ #define LL_RCC_HSICALIBRATION_24MHz ((*(uint32_t *)(0x1FFF0100)) & 0xFFFF) /*!< 24MHz HSI calibration trimming value */ #if defined(RCC_HSI48M_SUPPORT) #define LL_RCC_HSICALIBRATION_48MHz ((*(uint32_t *)(0x1FFF0104)) & 0xFFFF) /*!< 48MHz HSI calibration trimming value */ #endif /** * @} */ /** @defgroup RCC_LSI_EC_Calibration LSI Calibration * @{ */ #define LL_RCC_LSICALIBRATION_32768Hz ((*(uint32_t *)(0x1FFF0144)) & 0x1FF) /*!< 32.768KHz LSI calibration trimming value */ #define LL_RCC_LSICALIBRATION_38400Hz ((*(uint32_t *)(0x1FFF0148)) & 0x1FF) /*!< 38.4KHz LSI calibration trimming value */ /** * @} */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup RCC_LL_Exported_Macros RCC Exported Macros * @{ */ /** @defgroup RCC_LL_EM_WRITE_READ Common Write and read registers Macros * @{ */ /** * @brief Write a value in RCC register * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_RCC_WriteReg(__REG__, __VALUE__) WRITE_REG((RCC->__REG__), (__VALUE__)) /** * @brief Read a value in RCC register * @param __REG__ Register to be read * @retval Register value */ #define LL_RCC_ReadReg(__REG__) READ_REG(RCC->__REG__) /** * @} */ /** @defgroup RCC_LL_EM_CALC_FREQ Calculate frequencies * @{ */ /** * @brief Helper macro to calculate the HCLK frequency * @param __SYSCLKFREQ__ SYSCLK frequency * @param __AHBPRESCALER__ This parameter can be one of the following values: * @arg @ref LL_RCC_SYSCLK_DIV_1 * @arg @ref LL_RCC_SYSCLK_DIV_2 * @arg @ref LL_RCC_SYSCLK_DIV_4 * @arg @ref LL_RCC_SYSCLK_DIV_8 * @arg @ref LL_RCC_SYSCLK_DIV_16 * @arg @ref LL_RCC_SYSCLK_DIV_64 * @arg @ref LL_RCC_SYSCLK_DIV_128 * @arg @ref LL_RCC_SYSCLK_DIV_256 * @arg @ref LL_RCC_SYSCLK_DIV_512 * @retval HCLK clock frequency (in Hz) */ #define __LL_RCC_CALC_HCLK_FREQ(__SYSCLKFREQ__,__AHBPRESCALER__) \ ((__SYSCLKFREQ__) >> (AHBPrescTable[((__AHBPRESCALER__) & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos] & 0x1FU)) /** * @brief Helper macro to calculate the PCLK1 frequency (APB1) * @param __HCLKFREQ__ HCLK frequency * @param __APB1PRESCALER__ This parameter can be one of the following values: * @arg @ref LL_RCC_APB1_DIV_1 * @arg @ref LL_RCC_APB1_DIV_2 * @arg @ref LL_RCC_APB1_DIV_4 * @arg @ref LL_RCC_APB1_DIV_8 * @arg @ref LL_RCC_APB1_DIV_16 * @retval PCLK1 clock frequency (in Hz) */ #define __LL_RCC_CALC_PCLK1_FREQ(__HCLKFREQ__, __APB1PRESCALER__) \ ((__HCLKFREQ__) >> (APBPrescTable[(__APB1PRESCALER__) >> RCC_CFGR_PPRE_Pos] & 0x1FU)) /** * @brief Helper macro to calculate the HSISYS frequency * @param __HSIDIV__ This parameter can be one of the following values: * @arg @ref LL_RCC_HSI_DIV_1 * @arg @ref LL_RCC_HSI_DIV_2 * @arg @ref LL_RCC_HSI_DIV_4 * @arg @ref LL_RCC_HSI_DIV_8 * @arg @ref LL_RCC_HSI_DIV_16 * @arg @ref LL_RCC_HSI_DIV_32 * @arg @ref LL_RCC_HSI_DIV_64 * @arg @ref LL_RCC_HSI_DIV_128 * @retval HSISYS clock frequency (in Hz) */ #define __LL_RCC_CALC_HSI_FREQ(__HSIDIV__) \ (HSIFreqTable[(RCC->ICSCR & RCC_ICSCR_HSI_FS) >> RCC_ICSCR_HSI_FS_Pos] / (1U << ((__HSIDIV__)>> RCC_CR_HSIDIV_Pos))) /** * @} */ /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup RCC_LL_Exported_Functions RCC Exported Functions * @{ */ /** @defgroup RCC_LL_EF_HSI HSI * @{ */ /** * @brief Enable HSI oscillator * @rmtoll CR HSION LL_RCC_HSI_Enable * @retval None */ __STATIC_INLINE void LL_RCC_HSI_Enable(void) { SET_BIT(RCC->CR, RCC_CR_HSION); } /** * @brief Disable HSI oscillator * @rmtoll CR HSION LL_RCC_HSI_Disable * @retval None */ __STATIC_INLINE void LL_RCC_HSI_Disable(void) { CLEAR_BIT(RCC->CR, RCC_CR_HSION); } /** * @brief Check if HSI clock is ready * @rmtoll CR HSIRDY LL_RCC_HSI_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_HSI_IsReady(void) { return ((READ_BIT(RCC->CR, RCC_CR_HSIRDY) == (RCC_CR_HSIRDY)) ? 1UL : 0UL); } /** * @brief Set HSI Calibration trimming * @param Value Between Min_Data = 0 and Max_Data = 0x1FFF * @retval None */ __STATIC_INLINE void LL_RCC_HSI_SetCalibTrimming(uint32_t Value) { MODIFY_REG(RCC->ICSCR, RCC_ICSCR_HSI_TRIM, Value << RCC_ICSCR_HSI_TRIM_Pos); } /** * @brief Get HSI Calibration trimming * @rmtoll ICSCR HSITRIM LL_RCC_HSI_GetCalibTrimming * @retval Between Min_Data = 0 and Max_Data = 0x1FFF */ __STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibTrimming(void) { return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_HSI_TRIM) >> RCC_ICSCR_HSI_TRIM_Pos); } /** * @brief Set HSI Calibration Frequency * @param Value This parameter can be one of the following values: * @arg @ref LL_RCC_HSICALIBRATION_24MHz * @arg @ref LL_RCC_HSICALIBRATION_48MHz * @note Depending on devices and packages, some calibration values may not be available. * Refer to device datasheet for calibration values availability. * @retval None */ __STATIC_INLINE void LL_RCC_HSI_SetCalibFreq(uint32_t Value) { MODIFY_REG(RCC->ICSCR, (RCC_ICSCR_HSI_FS | RCC_ICSCR_HSI_TRIM), (Value << RCC_ICSCR_HSI_TRIM_Pos)); } /** * @brief Get HSI Frequency * @retval HSI clock frequency (in Hz) */ __STATIC_INLINE uint32_t LL_RCC_HSI_GetFreq(void) { return (uint32_t)HSIFreqTable[(RCC->ICSCR & RCC_ICSCR_HSI_FS) >> RCC_ICSCR_HSI_FS_Pos]; } /** * @} */ /** @defgroup RCC_LL_EF_HSE HSE * @{ */ /** * @brief Enable external clock source (HSE bypass). * @rmtoll CR HSEEN LL_RCC_HSE_EnableBypass * @retval None */ __STATIC_INLINE void LL_RCC_HSE_EnableBypass(void) { SET_BIT(RCC->CR, RCC_CR_HSEEN); } /** * @brief Disable external clock source (HSE bypass). * @rmtoll CR HSEEN LL_RCC_HSE_DisableBypass * @retval None */ __STATIC_INLINE void LL_RCC_HSE_DisableBypass(void) { CLEAR_BIT(RCC->CR, RCC_CR_HSEEN); } /** * @brief Check if HSE Bypass clock is on * @rmtoll CR HSEEN LL_RCC_HSE_IsBypass * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_HSE_IsBypass(void) { return ((READ_BIT(RCC->CR, RCC_CR_HSEEN) == (RCC_CR_HSEEN)) ? 1UL : 0UL); } /** * @} */ #if defined(RCC_LSE_SUPPORT) /** @defgroup RCC_LL_EF_LSE LSE * @{ */ /** * @brief Enable Low Speed External (LSE) crystal. * @rmtoll BDCR LSEON LL_RCC_LSE_Enable * @retval None */ __STATIC_INLINE void LL_RCC_LSE_Enable(void) { SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); } /** * @brief Disable Low Speed External (LSE) crystal. * @rmtoll BDCR LSEON LL_RCC_LSE_Disable * @retval None */ __STATIC_INLINE void LL_RCC_LSE_Disable(void) { CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); } /** * @brief Enable external clock source (LSE bypass). * @rmtoll BDCR LSEBYP LL_RCC_LSE_EnableBypass * @retval None */ __STATIC_INLINE void LL_RCC_LSE_EnableBypass(void) { SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); } /** * @brief Disable external clock source (LSE bypass). * @rmtoll BDCR LSEBYP LL_RCC_LSE_DisableBypass * @retval None */ __STATIC_INLINE void LL_RCC_LSE_DisableBypass(void) { CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); } /** * @brief Set LSE oscillator drive capability * @note The oscillator is in Xtal mode when it is not in bypass mode. * @param LSEDrive This parameter can be one of the following values: * @arg @ref LL_RCC_LSEDRIVE_CLOSE * @arg @ref LL_RCC_LSEDRIVE_LOW * @arg @ref LL_RCC_LSEDRIVE_MEDIUM * @arg @ref LL_RCC_LSEDRIVE_HIGH * @retval None */ __STATIC_INLINE void LL_RCC_LSE_SetDriveCapability(uint32_t LSEDrive) { MODIFY_REG(RCC->ECSCR, RCC_ECSCR_LSE_DRIVER, LSEDrive); } /** * @brief Get LSE oscillator drive capability * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_LSEDRIVE_CLOSE * @arg @ref LL_RCC_LSEDRIVE_LOW * @arg @ref LL_RCC_LSEDRIVE_MEDIUM * @arg @ref LL_RCC_LSEDRIVE_HIGH */ __STATIC_INLINE uint32_t LL_RCC_LSE_GetDriveCapability(void) { return (uint32_t)(READ_BIT(RCC->ECSCR, RCC_ECSCR_LSE_DRIVER)); } /** * @brief Set LSE startup time * @param LSEStartup This parameter can be one of the following values: * @arg @ref LL_RCC_LSESTARTUP_DELAY_LOW * @arg @ref LL_RCC_LSESTARTUP_DELAY_MEDIUM * @arg @ref LL_RCC_LSESTARTUP_DELAY_HIGH * @arg @ref LL_RCC_LSESTARTUP_DELAY_VERY_HIGH * @retval None */ __STATIC_INLINE void LL_RCC_LSE_SetStartupTime(uint32_t LSEStartup) { MODIFY_REG(RCC->ECSCR, RCC_ECSCR_LSE_STARTUP, LSEStartup); } /** * @brief Get LSE startup time * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_LSESTARTUP_DELAY_LOW * @arg @ref LL_RCC_LSESTARTUP_DELAY_MEDIUM * @arg @ref LL_RCC_LSESTARTUP_DELAY_HIGH * @arg @ref LL_RCC_LSESTARTUP_DELAY_VERY_HIGH */ __STATIC_INLINE uint32_t LL_RCC_LSE_GetStartupTime(void) { return (uint32_t)(READ_BIT(RCC->ECSCR, RCC_ECSCR_LSE_STARTUP)); } /** * @brief Enable Clock security system on LSE. * @rmtoll BDCR LSECSSON LL_RCC_LSE_EnableCSS * @retval None */ __STATIC_INLINE void LL_RCC_LSE_EnableCSS(void) { SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON); } /** * @brief Disable Clock security system on LSE. * @note Clock security system can be disabled only after a LSE * failure detection. In that case it MUST be disabled by software. * @rmtoll BDCR LSECSSON LL_RCC_LSE_DisableCSS * @retval None */ __STATIC_INLINE void LL_RCC_LSE_DisableCSS(void) { CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSECSSON); } /** * @brief Check if LSE oscillator Ready * @rmtoll BDCR LSERDY LL_RCC_LSE_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_LSE_IsReady(void) { return ((READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == (RCC_BDCR_LSERDY)) ? 1UL : 0UL); } /** * @brief Check if CSS on LSE failure Detection * @rmtoll BDCR LSECSSD LL_RCC_LSE_IsCSSDetected * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_LSE_IsCSSDetected(void) { return ((READ_BIT(RCC->BDCR, RCC_BDCR_LSECSSD) == (RCC_BDCR_LSECSSD)) ? 1UL : 0UL); } /** * @} */ #endif /** @defgroup RCC_LL_EF_LSI LSI * @{ */ /** * @brief Enable LSI Oscillator * @rmtoll CSR LSION LL_RCC_LSI_Enable * @retval None */ __STATIC_INLINE void LL_RCC_LSI_Enable(void) { SET_BIT(RCC->CSR, RCC_CSR_LSION); } /** * @brief Disable LSI Oscillator * @rmtoll CSR LSION LL_RCC_LSI_Disable * @retval None */ __STATIC_INLINE void LL_RCC_LSI_Disable(void) { CLEAR_BIT(RCC->CSR, RCC_CSR_LSION); } /** * @brief Check if LSI is Ready * @rmtoll CSR LSIRDY LL_RCC_LSI_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_LSI_IsReady(void) { return ((READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == (RCC_CSR_LSIRDY)) ? 1UL : 0UL); } /** * @brief Set LSI Calibration trimming * @param Value This parameter can be one of the following values: * @arg @ref LL_RCC_LSICALIBRATION_32768Hz * @arg @ref LL_RCC_LSICALIBRATION_38400Hz * @retval None */ __STATIC_INLINE void LL_RCC_LSI_SetCalibTrimming(uint32_t Value) { MODIFY_REG(RCC->ICSCR, RCC_ICSCR_LSI_TRIM, (Value << RCC_ICSCR_LSI_TRIM_Pos)); } /** * @brief Get LSI Calibration trimming * @rmtoll ICSCR LSI_TRIM LL_RCC_LSI_GetCalibTrimming * @retval Between Min_Data = 0 and Max_Data = 0x1FFF */ __STATIC_INLINE uint32_t LL_RCC_LSI_GetCalibTrimming(void) { return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_LSI_TRIM) >> RCC_ICSCR_LSI_TRIM_Pos); } /** * @brief Get LSI Frequency * @retval HSI clock frequency (in Hz) */ __STATIC_INLINE uint32_t LL_RCC_LSI_GetFreq(void) { return ((LL_RCC_LSI_GetCalibTrimming() == LL_RCC_LSICALIBRATION_32768Hz) ? 32768UL : \ ((LL_RCC_LSI_GetCalibTrimming() == LL_RCC_LSICALIBRATION_38400Hz) ? 38400UL : 0)); } /** * @} */ #if defined(RCC_BDCR_LSCOEN) /** @defgroup RCC_LL_EF_LSCO LSCO * @{ */ /** * @brief Enable Low speed clock * @rmtoll BDCR LSCOEN LL_RCC_LSCO_Enable * @retval None */ __STATIC_INLINE void LL_RCC_LSCO_Enable(void) { SET_BIT(RCC->BDCR, RCC_BDCR_LSCOEN); } /** * @brief Disable Low speed clock * @rmtoll BDCR LSCOEN LL_RCC_LSCO_Disable * @retval None */ __STATIC_INLINE void LL_RCC_LSCO_Disable(void) { CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSCOEN); } #if defined(RCC_BDCR_LSCOSEL) /** * @brief Configure Low speed clock selection * @rmtoll BDCR LSCOSEL LL_RCC_LSCO_SetSource * @param Source This parameter can be one of the following values: * @arg @ref LL_RCC_LSCO_CLKSOURCE_LSI * @arg @ref LL_RCC_LSCO_CLKSOURCE_LSE * @retval None */ __STATIC_INLINE void LL_RCC_LSCO_SetSource(uint32_t Source) { MODIFY_REG(RCC->BDCR, RCC_BDCR_LSCOSEL, Source); } /** * @brief Get Low speed clock selection * @rmtoll BDCR LSCOSEL LL_RCC_LSCO_GetSource * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_LSCO_CLKSOURCE_LSI * @arg @ref LL_RCC_LSCO_CLKSOURCE_LSE */ __STATIC_INLINE uint32_t LL_RCC_LSCO_GetSource(void) { return (uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_LSCOSEL)); } /** * @} */ #endif #endif /** @defgroup RCC_LL_EF_System System * @{ */ /** * @brief Configure the system clock source * @rmtoll CFGR SW LL_RCC_SetSysClkSource * @param Source This parameter can be one of the following values: * @arg @ref LL_RCC_SYS_CLKSOURCE_HSISYS * @arg @ref LL_RCC_SYS_CLKSOURCE_HSE * @arg @ref LL_RCC_SYS_CLKSOURCE_LSI * @arg @ref LL_RCC_SYS_CLKSOURCE_LSE * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @retval None */ __STATIC_INLINE void LL_RCC_SetSysClkSource(uint32_t Source) { MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, Source); } /** * @brief Get the system clock source * @rmtoll CFGR SWS LL_RCC_GetSysClkSource * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSISYS * @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSE * @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_LSI * @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_LSE * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. */ __STATIC_INLINE uint32_t LL_RCC_GetSysClkSource(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_SWS)); } /** * @brief Set AHB prescaler * @rmtoll CFGR HPRE LL_RCC_SetAHBPrescaler * @param Prescaler This parameter can be one of the following values: * @arg @ref LL_RCC_SYSCLK_DIV_1 * @arg @ref LL_RCC_SYSCLK_DIV_2 * @arg @ref LL_RCC_SYSCLK_DIV_4 * @arg @ref LL_RCC_SYSCLK_DIV_8 * @arg @ref LL_RCC_SYSCLK_DIV_16 * @arg @ref LL_RCC_SYSCLK_DIV_64 * @arg @ref LL_RCC_SYSCLK_DIV_128 * @arg @ref LL_RCC_SYSCLK_DIV_256 * @arg @ref LL_RCC_SYSCLK_DIV_512 * @retval None */ __STATIC_INLINE void LL_RCC_SetAHBPrescaler(uint32_t Prescaler) { MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, Prescaler); } /** * @brief Set APB1 prescaler * @rmtoll CFGR PPRE LL_RCC_SetAPB1Prescaler * @param Prescaler This parameter can be one of the following values: * @arg @ref LL_RCC_APB1_DIV_1 * @arg @ref LL_RCC_APB1_DIV_2 * @arg @ref LL_RCC_APB1_DIV_4 * @arg @ref LL_RCC_APB1_DIV_8 * @arg @ref LL_RCC_APB1_DIV_16 * @retval None */ __STATIC_INLINE void LL_RCC_SetAPB1Prescaler(uint32_t Prescaler) { MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, Prescaler); } /** * @brief Set HSI division factor * @rmtoll CR HSIDIV LL_RCC_SetHSIDiv * @note HSIDIV parameter is only applied to SYSCLK_Frequency when HSI is used as * system clock source. * @param HSIDiv This parameter can be one of the following values: * @arg @ref LL_RCC_HSI_DIV_1 * @arg @ref LL_RCC_HSI_DIV_2 * @arg @ref LL_RCC_HSI_DIV_4 * @arg @ref LL_RCC_HSI_DIV_8 * @arg @ref LL_RCC_HSI_DIV_16 * @arg @ref LL_RCC_HSI_DIV_32 * @arg @ref LL_RCC_HSI_DIV_64 * @arg @ref LL_RCC_HSI_DIV_128 * @retval None */ __STATIC_INLINE void LL_RCC_SetHSIDiv(uint32_t HSIDiv) { MODIFY_REG(RCC->CR, RCC_CR_HSIDIV, HSIDiv); } /** * @brief Get AHB prescaler * @rmtoll CFGR HPRE LL_RCC_GetAHBPrescaler * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_SYSCLK_DIV_1 * @arg @ref LL_RCC_SYSCLK_DIV_2 * @arg @ref LL_RCC_SYSCLK_DIV_4 * @arg @ref LL_RCC_SYSCLK_DIV_8 * @arg @ref LL_RCC_SYSCLK_DIV_16 * @arg @ref LL_RCC_SYSCLK_DIV_64 * @arg @ref LL_RCC_SYSCLK_DIV_128 * @arg @ref LL_RCC_SYSCLK_DIV_256 * @arg @ref LL_RCC_SYSCLK_DIV_512 */ __STATIC_INLINE uint32_t LL_RCC_GetAHBPrescaler(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE)); } /** * @brief Get APB1 prescaler * @rmtoll CFGR PPRE LL_RCC_GetAPB1Prescaler * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_APB1_DIV_1 * @arg @ref LL_RCC_APB1_DIV_2 * @arg @ref LL_RCC_APB1_DIV_4 * @arg @ref LL_RCC_APB1_DIV_8 * @arg @ref LL_RCC_APB1_DIV_16 */ __STATIC_INLINE uint32_t LL_RCC_GetAPB1Prescaler(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE)); } /** * @brief Get HSI division factor * @rmtoll CR HSIDIV LL_RCC_GetHSIDiv * @note HSIDIV parameter is only applied to SYSCLK_Frequency when HSI is used as * system clock source. * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_HSI_DIV_1 * @arg @ref LL_RCC_HSI_DIV_2 * @arg @ref LL_RCC_HSI_DIV_4 * @arg @ref LL_RCC_HSI_DIV_8 * @arg @ref LL_RCC_HSI_DIV_16 * @arg @ref LL_RCC_HSI_DIV_32 * @arg @ref LL_RCC_HSI_DIV_64 * @arg @ref LL_RCC_HSI_DIV_128 */ __STATIC_INLINE uint32_t LL_RCC_GetHSIDiv(void) { return (uint32_t)(READ_BIT(RCC->CR, RCC_CR_HSIDIV)); } /** * @} */ /** @defgroup RCC_LL_EF_MCO MCO * @{ */ /** * @brief Configure MCOx * @rmtoll CFGR MCOSEL LL_RCC_ConfigMCO\n * CFGR MCOPRE LL_RCC_ConfigMCO * @param MCOxSource This parameter can be one of the following values: * @arg @ref LL_RCC_MCO1SOURCE_NOCLOCK * @arg @ref LL_RCC_MCO1SOURCE_SYSCLK * @arg @ref LL_RCC_MCO1SOURCE_HSI * @arg @ref LL_RCC_MCO1SOURCE_HSE * @arg @ref LL_RCC_MCO1SOURCE_LSI * @arg @ref LL_RCC_MCO1SOURCE_LSE * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @param MCOxPrescaler This parameter can be one of the following values: * @arg @ref LL_RCC_MCO1_DIV_1 * @arg @ref LL_RCC_MCO1_DIV_2 * @arg @ref LL_RCC_MCO1_DIV_4 * @arg @ref LL_RCC_MCO1_DIV_8 * @arg @ref LL_RCC_MCO1_DIV_16 * @arg @ref LL_RCC_MCO1_DIV_32 * @arg @ref LL_RCC_MCO1_DIV_64 * @arg @ref LL_RCC_MCO1_DIV_128 * @retval None */ __STATIC_INLINE void LL_RCC_ConfigMCO(uint32_t MCOxSource, uint32_t MCOxPrescaler) { MODIFY_REG(RCC->CFGR, RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE, MCOxSource | MCOxPrescaler); } /** * @brief Get MCO clock source * @rmtoll CFGR MCOSEL LL_RCC_GetMCOClockSource * @param MCOx This parameter can be one of the following values: * @arg @ref LL_RCC_MCO1_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_MCO1SOURCE_NOCLOCK * @arg @ref LL_RCC_MCO1SOURCE_SYSCLK * @arg @ref LL_RCC_MCO1SOURCE_HSI * @arg @ref LL_RCC_MCO1SOURCE_HSE * @arg @ref LL_RCC_MCO1SOURCE_LSI * @arg @ref LL_RCC_MCO1SOURCE_LSE * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. */ __STATIC_INLINE uint32_t LL_RCC_GetMCOClockSource(uint32_t MCOx) { return (uint32_t)(READ_BIT(RCC->CFGR, MCOx)); } /** * @brief Get MCO division factor * @rmtoll CFGR MCOPRE LL_RCC_GetMCODiv * @param MCOx This parameter can be one of the following values: * @arg @ref LL_RCC_MCO1_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_MCO1_DIV_1 * @arg @ref LL_RCC_MCO1_DIV_2 * @arg @ref LL_RCC_MCO1_DIV_4 * @arg @ref LL_RCC_MCO1_DIV_8 * @arg @ref LL_RCC_MCO1_DIV_16 * @arg @ref LL_RCC_MCO1_DIV_32 * @arg @ref LL_RCC_MCO1_DIV_64 * @arg @ref LL_RCC_MCO1_DIV_128 */ __STATIC_INLINE uint32_t LL_RCC_GetMCODiv(uint32_t MCOx) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_MCOPRE)); } /** * @} */ /** @defgroup RCC_LL_EF_Peripheral_Clock_Source Peripheral Clock Source * @{ */ #if defined(COMP1) /** * @brief Configure COMPx clock source * @rmtoll CCIPR COMPxSEL LL_RCC_SetCOMPClockSource * @param COMPxSource This parameter can be one of the following values: * @arg @ref LL_RCC_COMP1_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_COMP1_CLKSOURCE_LSC * @arg @ref LL_RCC_COMP2_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_COMP2_CLKSOURCE_LSC * @note Depending on devices and packages,some COMP may not be available. * Refer to device datasheet for COMP availability. * @retval None */ __STATIC_INLINE void LL_RCC_SetCOMPClockSource(uint32_t COMPxSource) { register uint32_t regTmp1 = (RCC->CCIPR & 0x0000FF00U) & (~(COMPxSource & 0x0000FF00U)); regTmp1 = regTmp1 | (regTmp1 >> 2); register uint32_t regTmp2 = ((COMPxSource & 0xFFU) | ((COMPxSource & 0xFFU) >> 2)) << 8U; MODIFY_REG(RCC->CCIPR, (COMPxSource & 0x0000FF00U), (regTmp1 | regTmp2)); } #endif /* COMP1 */ #if defined(COMP1) /** * @brief Get COMPx clock source * @rmtoll CCIPR COMPxSEL LL_RCC_GetCOMPClockSource * @param COMPx This parameter can be one of the following values: * @arg @ref LL_RCC_COMP1_CLKSOURCE * @arg @ref LL_RCC_COMP2_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_COMP1_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_COMP1_CLKSOURCE_LSC * @arg @ref LL_RCC_COMP2_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_COMP2_CLKSOURCE_LSC * @note Depending on devices and packages,some COMP may not be available. * Refer to device datasheet for COMP availability. */ __STATIC_INLINE uint32_t LL_RCC_GetCOMPClockSource(uint32_t COMPx) { return (uint32_t)((READ_BIT(RCC->CCIPR, COMPx) >> 8U) | COMPx); } #endif /* COMP1 */ #if defined(RCC_CCIPR_LPTIMSEL) /** * @brief Configure LPTIMx clock source * @rmtoll CCIPR LPTIMxSEL LL_RCC_SetLPTIMClockSource * @param LPTIMxSource This parameter can be one of the following values: * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSI * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_NONE * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSE * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @retval None */ __STATIC_INLINE void LL_RCC_SetLPTIMClockSource(uint32_t LPTIMxSource) { register uint32_t regTmp1 = (RCC->CCIPR & 0x0000FF00U); register uint32_t regTmp2 = ((RCC->CCIPR & 0x0000FF00U) >> 2); register uint32_t regTmp = regTmp1 | regTmp2; MODIFY_REG(RCC->CCIPR, RCC_CCIPR_LPTIMSEL, (LPTIMxSource | regTmp)); } /** * @brief Get LPTIMx clock source * @rmtoll CCIPR LPTIMxSEL LL_RCC_GetLPTIMClockSource * @param LPTIMx This parameter can be one of the following values: * @arg @ref LL_RCC_LPTIM1_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSI * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_NONE * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSE * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. */ __STATIC_INLINE uint32_t LL_RCC_GetLPTIMClockSource(uint32_t LPTIMx) { return (uint32_t)(READ_BIT(RCC->CCIPR, RCC_CCIPR_LPTIMSEL)); } #endif /* RCC_CCIPR_LPTIMSEL */ /** * @} */ /** @defgroup RCC_LL_EF_FLAG_Management FLAG Management * @{ */ /** * @brief Clear LSI ready interrupt flag * @rmtoll CICR LSIRDYC LL_RCC_ClearFlag_LSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_LSIRDY(void) { SET_BIT(RCC->CICR, RCC_CICR_LSIRDYC); } #if defined(RCC_LSE_SUPPORT) /** * @brief Clear LSE ready interrupt flag * @rmtoll CICR LSERDYC LL_RCC_ClearFlag_LSERDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_LSERDY(void) { SET_BIT(RCC->CICR, RCC_CICR_LSERDYC); } #endif /** * @brief Clear HSI ready interrupt flag * @rmtoll CICR HSIRDYC LL_RCC_ClearFlag_HSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_HSIRDY(void) { SET_BIT(RCC->CICR, RCC_CICR_HSIRDYC); } #if defined(RCC_LSE_SUPPORT) /** * @brief Clear LSE Clock security system interrupt flag * @rmtoll CICR LSECSSC LL_RCC_ClearFlag_LSECSS * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_LSECSS(void) { SET_BIT(RCC->CICR, RCC_CICR_LSECSSC); } #endif /** * @brief Check if LSI ready interrupt occurred or not * @rmtoll CIFR LSIRDYF LL_RCC_IsActiveFlag_LSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSIRDY(void) { return ((READ_BIT(RCC->CIFR, RCC_CIFR_LSIRDYF) == (RCC_CIFR_LSIRDYF)) ? 1UL : 0UL); } #if defined(RCC_LSE_SUPPORT) /** * @brief Check if LSE ready interrupt occurred or not * @rmtoll CIFR LSERDYF LL_RCC_IsActiveFlag_LSERDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSERDY(void) { return ((READ_BIT(RCC->CIFR, RCC_CIFR_LSERDYF) == (RCC_CIFR_LSERDYF)) ? 1UL : 0UL); } #endif /** * @brief Check if HSI ready interrupt occurred or not * @rmtoll CIFR HSIRDYF LL_RCC_IsActiveFlag_HSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSIRDY(void) { return ((READ_BIT(RCC->CIFR, RCC_CIFR_HSIRDYF) == (RCC_CIFR_HSIRDYF)) ? 1UL : 0UL); } #if defined(RCC_LSE_SUPPORT) /** * @brief Check if LSE Clock security system interrupt occurred or not * @rmtoll CIFR LSECSSF LL_RCC_IsActiveFlag_LSECSS * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSECSS(void) { return ((READ_BIT(RCC->CIFR, RCC_CIFR_LSECSSF) == (RCC_CIFR_LSECSSF)) ? 1UL : 0UL); } #endif /** * @brief Check if RCC flag Independent Watchdog reset is set or not. * @rmtoll CSR IWDGRSTF LL_RCC_IsActiveFlag_IWDGRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_IWDGRST(void) { return ((READ_BIT(RCC->CSR, RCC_CSR_IWDGRSTF) == (RCC_CSR_IWDGRSTF)) ? 1UL : 0UL); } /** * @brief Check if RCC flag Option byte reset is set or not. * @rmtoll CSR OBLRSTF LL_RCC_IsActiveFlag_OBLRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_OBLRST(void) { return ((READ_BIT(RCC->CSR, RCC_CSR_OBLRSTF) == (RCC_CSR_OBLRSTF)) ? 1UL : 0UL); } /** * @brief Check if RCC flag Pin reset is set or not. * @rmtoll CSR PINRSTF LL_RCC_IsActiveFlag_PINRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PINRST(void) { return ((READ_BIT(RCC->CSR, RCC_CSR_PINRSTF) == (RCC_CSR_PINRSTF)) ? 1UL : 0UL); } /** * @brief Check if RCC flag Software reset is set or not. * @rmtoll CSR SFTRSTF LL_RCC_IsActiveFlag_SFTRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_SFTRST(void) { return ((READ_BIT(RCC->CSR, RCC_CSR_SFTRSTF) == (RCC_CSR_SFTRSTF)) ? 1UL : 0UL); } /** * @brief Check if RCC flag BOR or POR/PDR reset is set or not. * @rmtoll CSR PWRRSTF LL_RCC_IsActiveFlag_PWRRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PWRRST(void) { return ((READ_BIT(RCC->CSR, RCC_CSR_PWRRSTF) == (RCC_CSR_PWRRSTF)) ? 1UL : 0UL); } /** * @brief Set RMVF bit to clear the reset flags. * @rmtoll CSR RMVF LL_RCC_ClearResetFlags * @retval None */ __STATIC_INLINE void LL_RCC_ClearResetFlags(void) { SET_BIT(RCC->CSR, RCC_CSR_RMVF); } /** * @brief Enable NRST filter * @rmtoll CSR NRST_FLTDIS LL_RCC_EnableNRSTFilter * @retval None */ __STATIC_INLINE void LL_RCC_EnableNRSTFilter(void) { CLEAR_BIT(RCC->CSR, RCC_CSR_NRST_FLTDIS); } /** * @brief Disable NRST filter * @rmtoll CSR NRST_FLTDIS LL_RCC_DisableNRSTFilter * @retval None */ __STATIC_INLINE void LL_RCC_DisableNRSTFilter(void) { SET_BIT(RCC->CSR, RCC_CSR_NRST_FLTDIS); } /** * @brief Check if NRST filter is enable * @rmtoll CSR NRST_FLTDIS LL_RCC_IsEnableNRSTFilter * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnableNRSTFilter(void) { return ((READ_BIT(RCC->CSR, RCC_CSR_NRST_FLTDIS) == (RCC_CSR_NRST_FLTDIS)) ? 0UL : 1UL); } /** * @} */ /** @defgroup RCC_LL_EF_IT_Management IT Management * @{ */ /** * @brief Enable LSI ready interrupt * @rmtoll CIER LSIRDYIE LL_RCC_EnableIT_LSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_LSIRDY(void) { SET_BIT(RCC->CIER, RCC_CIER_LSIRDYIE); } #if defined(RCC_LSE_SUPPORT) /** * @brief Enable LSE ready interrupt * @rmtoll CIER LSERDYIE LL_RCC_EnableIT_LSERDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_LSERDY(void) { SET_BIT(RCC->CIER, RCC_CIER_LSERDYIE); } #endif /** * @brief Enable HSI ready interrupt * @rmtoll CIER HSIRDYIE LL_RCC_EnableIT_HSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_HSIRDY(void) { SET_BIT(RCC->CIER, RCC_CIER_HSIRDYIE); } /** * @brief Disable LSI ready interrupt * @rmtoll CIER LSIRDYIE LL_RCC_DisableIT_LSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_LSIRDY(void) { CLEAR_BIT(RCC->CIER, RCC_CIER_LSIRDYIE); } #if defined(RCC_LSE_SUPPORT) /** * @brief Disable LSE ready interrupt * @rmtoll CIER LSERDYIE LL_RCC_DisableIT_LSERDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_LSERDY(void) { CLEAR_BIT(RCC->CIER, RCC_CIER_LSERDYIE); } #endif /** * @brief Disable HSI ready interrupt * @rmtoll CIER HSIRDYIE LL_RCC_DisableIT_HSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_HSIRDY(void) { CLEAR_BIT(RCC->CIER, RCC_CIER_HSIRDYIE); } /** * @brief Checks if LSI ready interrupt source is enabled or disabled. * @rmtoll CIER LSIRDYIE LL_RCC_IsEnabledIT_LSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSIRDY(void) { return ((READ_BIT(RCC->CIER, RCC_CIER_LSIRDYIE) == (RCC_CIER_LSIRDYIE)) ? 1UL : 0UL); } #if defined(RCC_LSE_SUPPORT) /** * @brief Checks if LSE ready interrupt source is enabled or disabled. * @rmtoll CIER LSERDYIE LL_RCC_IsEnabledIT_LSERDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSERDY(void) { return ((READ_BIT(RCC->CIER, RCC_CIER_LSERDYIE) == (RCC_CIER_LSERDYIE)) ? 1UL : 0UL); } #endif /** * @brief Checks if HSI ready interrupt source is enabled or disabled. * @rmtoll CIER HSIRDYIE LL_RCC_IsEnabledIT_HSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSIRDY(void) { return ((READ_BIT(RCC->CIER, RCC_CIER_HSIRDYIE) == (RCC_CIER_HSIRDYIE)) ? 1UL : 0UL); } /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup RCC_LL_EF_Init De-initialization function * @{ */ ErrorStatus LL_RCC_DeInit(void); /** * @} */ /** @defgroup RCC_LL_EF_Get_Freq Get system and peripherals clocks frequency functions * @{ */ void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks); uint32_t LL_RCC_GetMCOClockFreq(uint32_t MCOx); uint32_t LL_RCC_GetLSCClockFreq(void); #if defined(COMP1) uint32_t LL_RCC_GetCOMPClockFreq(uint32_t COMPx); #endif #if defined(LPTIM1) uint32_t LL_RCC_GetLPTIMClockFreq(uint32_t LPTIMx); #endif /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /** * @} */ #endif /* defined(RCC) */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __PY32F002B_LL_RCC_H */ /************************ (C) COPYRIGHT Puya *****END OF FILE****/