/**
******************************************************************************
* @file py32f002b_ll_rcc.h
* @author MCU Application Team
* @brief Header file of RCC LL module.
******************************************************************************
* @attention
*
*
© Copyright (c) 2023 Puya Semiconductor Co.
* All rights reserved.
*
* This software component is licensed by Puya under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
* @attention
*
* © Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __PY32F002B_LL_RCC_H
#define __PY32F002B_LL_RCC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "py32f0xx.h"
/** @addtogroup PY32F002B_LL_Driver
* @{
*/
#if defined(RCC)
/** @defgroup RCC_LL RCC
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup RCC_LL_Private_Variables RCC Private Variables
* @{
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_Private_Macros RCC Private Macros
* @{
*/
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_Exported_Types RCC Exported Types
* @{
*/
/** @defgroup LL_ES_CLOCK_FREQ Clocks Frequency Structure
* @{
*/
/**
* @brief RCC Clocks Frequency Structure
*/
typedef struct
{
uint32_t SYSCLK_Frequency; /*!< SYSCLK clock frequency */
uint32_t HCLK_Frequency; /*!< HCLK clock frequency */
uint32_t PCLK1_Frequency; /*!< PCLK1 clock frequency */
} LL_RCC_ClocksTypeDef;
/**
* @}
*/
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Constants RCC Exported Constants
* @{
*/
/** @defgroup RCC_LL_EC_OSC_VALUES Oscillator Values adaptation
* @brief Defines used to adapt values of different oscillators
* @note These values could be modified in the user environment according to
* HW set-up.
* @{
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE 24000000U /*!< Value of the HSE oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE 24000000U /*!< Value of the HSI oscillator in Hz */
#endif /* HSI_VALUE */
#if defined(RCC_LSE_SUPPORT)
#if !defined (LSE_VALUE)
#define LSE_VALUE 32768U /*!< Value of the LSE oscillator in Hz */
#endif /* LSE_VALUE */
#endif
#if !defined (LSI_VALUE)
#define LSI_VALUE 32768U /*!< Value of the LSI oscillator in Hz */
#endif /* LSI_VALUE */
/**
* @}
*/
/** @defgroup RCC_LL_EC_CLEAR_FLAG Clear Flags Defines
* @brief Flags defines which can be used with LL_RCC_WriteReg function
* @{
*/
#define LL_RCC_CICR_LSIRDYC RCC_CICR_LSIRDYC /*!< LSI Ready Interrupt Clear */
#define LL_RCC_CICR_HSIRDYC RCC_CICR_HSIRDYC /*!< HSI Ready Interrupt Clear */
#if defined(RCC_LSE_SUPPORT)
#define LL_RCC_CICR_LSERDYC RCC_CICR_LSERDYC /*!< LSE Ready Interrupt Clear */
#define LL_RCC_CICR_LSECSSC RCC_CICR_LSECSSC /*!< LSE Clock Security System Interrupt Clear */
#endif
/**
* @}
*/
/** @defgroup RCC_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_RCC_ReadReg function
* @{
*/
#define LL_RCC_CIFR_LSIRDYF RCC_CIFR_LSIRDYF /*!< LSI Ready Interrupt flag */
#define LL_RCC_CIFR_HSIRDYF RCC_CIFR_HSIRDYF /*!< HSI Ready Interrupt flag */
#if defined(RCC_LSE_SUPPORT)
#define LL_RCC_CIFR_LSERDYF RCC_CIFR_LSERDYF /*!< LSE Ready Interrupt flag */
#define LL_RCC_CIFR_LSECSSF RCC_CIFR_LSECSSF /*!< LSE Clock Security System Interrupt flag */
#endif
#define LL_RCC_CSR_OBLRSTF RCC_CSR_OBLRSTF /*!< OBL reset flag */
#define LL_RCC_CSR_PINRSTF RCC_CSR_PINRSTF /*!< PIN reset flag */
#define LL_RCC_CSR_SFTRSTF RCC_CSR_SFTRSTF /*!< Software Reset flag */
#define LL_RCC_CSR_IWDGRSTF RCC_CSR_IWDGRSTF /*!< Independent Watchdog reset flag */
#define LL_RCC_CSR_PWRRSTF RCC_CSR_PWRRSTF /*!< BOR or POR/PDR reset flag */
/**
* @}
*/
/** @defgroup RCC_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_RCC_ReadReg and LL_RCC_WriteReg functions
* @{
*/
#define LL_RCC_CIER_LSIRDYIE RCC_CIER_LSIRDYIE /*!< LSI Ready Interrupt Enable */
#if defined(RCC_LSE_SUPPORT)
#define LL_RCC_CIER_LSERDYIE RCC_CIER_LSERDYIE /*!< LSE Ready Interrupt Enable */
#endif
#define LL_RCC_CIER_HSIRDYIE RCC_CIER_HSIRDYIE /*!< HSI Ready Interrupt Enable */
/**
* @}
*/
#if defined(RCC_LSE_SUPPORT)
/** @defgroup RCC_LL_EC_LSEDRIVE LSE oscillator drive capability
* @{
*/
#define LL_RCC_LSEDRIVE_CLOSE 0x00000000 /*!< LSE driving capability closed */
#define LL_RCC_LSEDRIVE_LOW RCC_ECSCR_LSE_DRIVER_0 /*!< LSE lower driving capability */
#define LL_RCC_LSEDRIVE_MEDIUM RCC_ECSCR_LSE_DRIVER_1 /*!< LSE medium driving capability */
#define LL_RCC_LSEDRIVE_HIGH RCC_ECSCR_LSE_DRIVER /*!< LSE higher driving capability */
/**
* @}
*/
/** @defgroup RCC_LL_EC_LSESTARTUP LSE oscillator startup time
* @{
*/
#define LL_RCC_LSESTARTUP_DELAY_LOW RCC_ECSCR_LSE_STARTUP /*!< LSE Startup none delay */
#define LL_RCC_LSESTARTUP_DELAY_MEDIUM RCC_ECSCR_LSE_STARTUP_0 /*!< LSE Startup short delay */
#define LL_RCC_LSESTARTUP_DELAY_HIGH 0x00000000 /*!< LSE Startup long delay */
#define LL_RCC_LSESTARTUP_DELAY_VERY_HIGH RCC_ECSCR_LSE_STARTUP_1 /*!< LSE Startup very long delay */
/**
* @}
*/
#endif
#if defined(RCC_BDCR_LSCOSEL)
/** @defgroup RCC_LL_EC_LSCO_CLKSOURCE LSCO Selection
* @{
*/
#define LL_RCC_LSCO_CLKSOURCE_LSI 0x00000000U /*!< LSI selection for low speed clock */
#define LL_RCC_LSCO_CLKSOURCE_LSE RCC_BDCR_LSCOSEL /*!< LSE selection for low speed clock */
#endif
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYS_CLKSOURCE System clock switch
* @{
*/
#define LL_RCC_SYS_CLKSOURCE_HSISYS 0x00000000U /*!< HSISYS selection as system clock */
#define LL_RCC_SYS_CLKSOURCE_HSE RCC_CFGR_SW_0 /*!< HSE selection as system clock */
#define LL_RCC_SYS_CLKSOURCE_LSI (RCC_CFGR_SW_1 | RCC_CFGR_SW_0) /*!< LSI selection used as system clock */
#if defined(RCC_LSE_SUPPORT)
#define LL_RCC_SYS_CLKSOURCE_LSE RCC_CFGR_SW_2 /*!< LSE selection used as system clock */
#endif
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYS_CLKSOURCE_STATUS System clock switch status
* @{
*/
#define LL_RCC_SYS_CLKSOURCE_STATUS_HSISYS 0x00000000U /*!< HSISYS used as system clock */
#define LL_RCC_SYS_CLKSOURCE_STATUS_HSE RCC_CFGR_SWS_0 /*!< HSE used as system clock */
#define LL_RCC_SYS_CLKSOURCE_STATUS_LSI (RCC_CFGR_SWS_1 | RCC_CFGR_SWS_0) /*!< LSI used as system clock */
#if defined(RCC_LSE_SUPPORT)
#define LL_RCC_SYS_CLKSOURCE_STATUS_LSE RCC_CFGR_SWS_2 /*!< LSE used as system clock */
#endif
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYSCLK_DIV AHB prescaler
* @{
*/
#define LL_RCC_SYSCLK_DIV_1 0x00000000U /*!< SYSCLK not divided */
#define LL_RCC_SYSCLK_DIV_2 RCC_CFGR_HPRE_3 /*!< SYSCLK divided by 2 */
#define LL_RCC_SYSCLK_DIV_4 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 4 */
#define LL_RCC_SYSCLK_DIV_8 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 8 */
#define LL_RCC_SYSCLK_DIV_16 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 16 */
#define LL_RCC_SYSCLK_DIV_64 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2) /*!< SYSCLK divided by 64 */
#define LL_RCC_SYSCLK_DIV_128 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 128 */
#define LL_RCC_SYSCLK_DIV_256 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 256 */
#define LL_RCC_SYSCLK_DIV_512 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 512 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_APB1_DIV APB1 low-speed prescaler (APB1)
* @{
*/
#define LL_RCC_APB1_DIV_1 0x00000000U /*!< HCLK not divided */
#define LL_RCC_APB1_DIV_2 RCC_CFGR_PPRE_2 /*!< HCLK divided by 2 */
#define LL_RCC_APB1_DIV_4 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_0) /*!< HCLK divided by 4 */
#define LL_RCC_APB1_DIV_8 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1) /*!< HCLK divided by 8 */
#define LL_RCC_APB1_DIV_16 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1 | RCC_CFGR_PPRE_0) /*!< HCLK divided by 16 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_HSI_DIV HSI division factor
* @{
*/
#define LL_RCC_HSI_DIV_1 0x00000000U /*!< HSI not divided */
#define LL_RCC_HSI_DIV_2 RCC_CR_HSIDIV_0 /*!< HSI divided by 2 */
#define LL_RCC_HSI_DIV_4 RCC_CR_HSIDIV_1 /*!< HSI divided by 4 */
#define LL_RCC_HSI_DIV_8 (RCC_CR_HSIDIV_1 | RCC_CR_HSIDIV_0) /*!< HSI divided by 8 */
#define LL_RCC_HSI_DIV_16 RCC_CR_HSIDIV_2 /*!< HSI divided by 16 */
#define LL_RCC_HSI_DIV_32 (RCC_CR_HSIDIV_2 | RCC_CR_HSIDIV_0) /*!< HSI divided by 32 */
#define LL_RCC_HSI_DIV_64 (RCC_CR_HSIDIV_2 | RCC_CR_HSIDIV_1) /*!< HSI divided by 64 */
#define LL_RCC_HSI_DIV_128 RCC_CR_HSIDIV /*!< HSI divided by 128 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MCO1SOURCE MCO1 SOURCE selection
* @{
*/
#define LL_RCC_MCO1SOURCE_NOCLOCK 0x00000000U /*!< MCO output disabled, no clock on MCO */
#define LL_RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCOSEL_0 /*!< SYSCLK selection as MCO1 source */
#define LL_RCC_MCO1SOURCE_HSI (RCC_CFGR_MCOSEL_0| RCC_CFGR_MCOSEL_1) /*!< HSI selection as MCO1 source */
#define LL_RCC_MCO1SOURCE_HSE RCC_CFGR_MCOSEL_2 /*!< HSE selection as MCO1 source */
#define LL_RCC_MCO1SOURCE_LSI (RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSI selection as MCO1 source */
#if defined(RCC_LSE_SUPPORT)
#define LL_RCC_MCO1SOURCE_LSE (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSE selection as MCO1 source */
#endif
/**
* @}
*/
/** @defgroup RCC_LL_EC_MCO Peripheral MCO get clock source
* @{
*/
#define LL_RCC_MCO1_CLKSOURCE RCC_CFGR_MCOSEL /*!< MCO1 Clock source selection */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MCO1_DIV MCO1 prescaler
* @{
*/
#define LL_RCC_MCO1_DIV_1 0x00000000U /*!< MCO1 not divided */
#define LL_RCC_MCO1_DIV_2 RCC_CFGR_MCOPRE_0 /*!< MCO1 divided by 2 */
#define LL_RCC_MCO1_DIV_4 RCC_CFGR_MCOPRE_1 /*!< MCO1 divided by 4 */
#define LL_RCC_MCO1_DIV_8 (RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO1 divided by 8 */
#define LL_RCC_MCO1_DIV_16 RCC_CFGR_MCOPRE_2 /*!< MCO1 divided by 16 */
#define LL_RCC_MCO1_DIV_32 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_0) /*!< MCO1 divided by 32 */
#define LL_RCC_MCO1_DIV_64 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1) /*!< MCO1 divided by 64 */
#define LL_RCC_MCO1_DIV_128 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO1 divided by 128 */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_EC_PERIPH_FREQUENCY Peripheral clock frequency
* @{
*/
#define LL_RCC_PERIPH_FREQUENCY_NO 0x00000000U /*!< No clock enabled for the peripheral */
#define LL_RCC_PERIPH_FREQUENCY_NA 0xFFFFFFFFU /*!< Frequency cannot be provided as external clock */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
#if defined(COMP1)
/** @defgroup RCC_LL_EC_COMPx_CLKSOURCE Peripheral COMP clock source selection
* @{
*/
#define LL_RCC_COMP1_CLKSOURCE_PCLK1 (RCC_CCIPR_COMP1SEL | (0x00000000U >> 8U)) /*!< PCLK1 selected as COMP1 clock */
#define LL_RCC_COMP1_CLKSOURCE_LSC (RCC_CCIPR_COMP1SEL | (RCC_CCIPR_COMP1SEL >> 8U)) /*!< LSC selected as COMP1 clock */
#if defined(COMP2)
#define LL_RCC_COMP2_CLKSOURCE_PCLK1 (RCC_CCIPR_COMP2SEL | (0x00000000U >> 8U)) /*!< PCLK1 selected as COMP2 clock */
#define LL_RCC_COMP2_CLKSOURCE_LSC (RCC_CCIPR_COMP2SEL | (RCC_CCIPR_COMP2SEL >> 8U)) /*!< LSC selected as COMP2 clock */
#endif
/**
* @}
*/
#endif /* COMP1 && COMP2 */
#if defined(RCC_CCIPR_LPTIMSEL)
/** @defgroup RCC_LL_EC_LPTIMx_CLKSOURCE Peripheral LPTIM clock source selection
* @{
*/
#define LL_RCC_LPTIM1_CLKSOURCE_NONE RCC_CCIPR_LPTIMSEL_1 /*!< No clock used as LPTIM1 clock */
#define LL_RCC_LPTIM1_CLKSOURCE_PCLK1 0x00000000U /*!< PCLK1 selected as LPTIM1 clock */
#define LL_RCC_LPTIM1_CLKSOURCE_LSI RCC_CCIPR_LPTIMSEL_0 /*!< LSI selected as LPTIM1 clock */
#if defined(RCC_LSE_SUPPORT)
#define LL_RCC_LPTIM1_CLKSOURCE_LSE RCC_CCIPR_LPTIMSEL /*!< LSE selected as LPTIM1 clock */
#endif
/**
* @}
*/
#endif /* RCC_CCIPR_LPTIMSEL */
#if defined(COMP1)
/** @defgroup RCC_LL_EC_COMP Peripheral COMP get clock source
* @{
*/
#define LL_RCC_COMP1_CLKSOURCE RCC_CCIPR_COMP1SEL /*!< COMP1 Clock source selection */
#if defined(COMP2)
#define LL_RCC_COMP2_CLKSOURCE RCC_CCIPR_COMP2SEL /*!< COMP2 Clock source selection */
#endif /* COMP2 */
/**
* @}
*/
#endif /* COMP1 */
#if defined(RCC_CCIPR_LPTIMSEL)
/** @defgroup RCC_LL_EC_LPTIM Peripheral LPTIM get clock source
* @{
*/
#define LL_RCC_LPTIM1_CLKSOURCE RCC_CCIPR_LPTIMSEL /*!< LPTIM1 Clock source selection */
/**
* @}
*/
#endif /* RCC_CCIPR_LPTIMSEL */
/** @defgroup RCC_HSI_EC_Calibration HSI Calibration
* @{
*/
#define LL_RCC_HSICALIBRATION_24MHz ((*(uint32_t *)(0x1FFF0100)) & 0xFFFF) /*!< 24MHz HSI calibration trimming value */
#if defined(RCC_HSI48M_SUPPORT)
#define LL_RCC_HSICALIBRATION_48MHz ((*(uint32_t *)(0x1FFF0104)) & 0xFFFF) /*!< 48MHz HSI calibration trimming value */
#endif
/**
* @}
*/
/** @defgroup RCC_LSI_EC_Calibration LSI Calibration
* @{
*/
#define LL_RCC_LSICALIBRATION_32768Hz ((*(uint32_t *)(0x1FFF0144)) & 0x1FF) /*!< 32.768KHz LSI calibration trimming value */
#define LL_RCC_LSICALIBRATION_38400Hz ((*(uint32_t *)(0x1FFF0148)) & 0x1FF) /*!< 38.4KHz LSI calibration trimming value */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Macros RCC Exported Macros
* @{
*/
/** @defgroup RCC_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in RCC register
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_RCC_WriteReg(__REG__, __VALUE__) WRITE_REG((RCC->__REG__), (__VALUE__))
/**
* @brief Read a value in RCC register
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_RCC_ReadReg(__REG__) READ_REG(RCC->__REG__)
/**
* @}
*/
/** @defgroup RCC_LL_EM_CALC_FREQ Calculate frequencies
* @{
*/
/**
* @brief Helper macro to calculate the HCLK frequency
* @param __SYSCLKFREQ__ SYSCLK frequency
* @param __AHBPRESCALER__ This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval HCLK clock frequency (in Hz)
*/
#define __LL_RCC_CALC_HCLK_FREQ(__SYSCLKFREQ__,__AHBPRESCALER__) \
((__SYSCLKFREQ__) >> (AHBPrescTable[((__AHBPRESCALER__) & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos] & 0x1FU))
/**
* @brief Helper macro to calculate the PCLK1 frequency (APB1)
* @param __HCLKFREQ__ HCLK frequency
* @param __APB1PRESCALER__ This parameter can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
* @retval PCLK1 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PCLK1_FREQ(__HCLKFREQ__, __APB1PRESCALER__) \
((__HCLKFREQ__) >> (APBPrescTable[(__APB1PRESCALER__) >> RCC_CFGR_PPRE_Pos] & 0x1FU))
/**
* @brief Helper macro to calculate the HSISYS frequency
* @param __HSIDIV__ This parameter can be one of the following values:
* @arg @ref LL_RCC_HSI_DIV_1
* @arg @ref LL_RCC_HSI_DIV_2
* @arg @ref LL_RCC_HSI_DIV_4
* @arg @ref LL_RCC_HSI_DIV_8
* @arg @ref LL_RCC_HSI_DIV_16
* @arg @ref LL_RCC_HSI_DIV_32
* @arg @ref LL_RCC_HSI_DIV_64
* @arg @ref LL_RCC_HSI_DIV_128
* @retval HSISYS clock frequency (in Hz)
*/
#define __LL_RCC_CALC_HSI_FREQ(__HSIDIV__) \
(HSIFreqTable[(RCC->ICSCR & RCC_ICSCR_HSI_FS) >> RCC_ICSCR_HSI_FS_Pos] / (1U << ((__HSIDIV__)>> RCC_CR_HSIDIV_Pos)))
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Functions RCC Exported Functions
* @{
*/
/** @defgroup RCC_LL_EF_HSI HSI
* @{
*/
/**
* @brief Enable HSI oscillator
* @rmtoll CR HSION LL_RCC_HSI_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_HSION);
}
/**
* @brief Disable HSI oscillator
* @rmtoll CR HSION LL_RCC_HSI_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSION);
}
/**
* @brief Check if HSI clock is ready
* @rmtoll CR HSIRDY LL_RCC_HSI_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_IsReady(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_HSIRDY) == (RCC_CR_HSIRDY)) ? 1UL : 0UL);
}
/**
* @brief Set HSI Calibration trimming
* @param Value Between Min_Data = 0 and Max_Data = 0x1FFF
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_SetCalibTrimming(uint32_t Value)
{
MODIFY_REG(RCC->ICSCR, RCC_ICSCR_HSI_TRIM, Value << RCC_ICSCR_HSI_TRIM_Pos);
}
/**
* @brief Get HSI Calibration trimming
* @rmtoll ICSCR HSITRIM LL_RCC_HSI_GetCalibTrimming
* @retval Between Min_Data = 0 and Max_Data = 0x1FFF
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibTrimming(void)
{
return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_HSI_TRIM) >> RCC_ICSCR_HSI_TRIM_Pos);
}
/**
* @brief Set HSI Calibration Frequency
* @param Value This parameter can be one of the following values:
* @arg @ref LL_RCC_HSICALIBRATION_24MHz
* @arg @ref LL_RCC_HSICALIBRATION_48MHz
* @note Depending on devices and packages, some calibration values may not be available.
* Refer to device datasheet for calibration values availability.
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_SetCalibFreq(uint32_t Value)
{
MODIFY_REG(RCC->ICSCR, (RCC_ICSCR_HSI_FS | RCC_ICSCR_HSI_TRIM), (Value << RCC_ICSCR_HSI_TRIM_Pos));
}
/**
* @brief Get HSI Frequency
* @retval HSI clock frequency (in Hz)
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_GetFreq(void)
{
return (uint32_t)HSIFreqTable[(RCC->ICSCR & RCC_ICSCR_HSI_FS) >> RCC_ICSCR_HSI_FS_Pos];
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_HSE HSE
* @{
*/
/**
* @brief Enable external clock source (HSE bypass).
* @rmtoll CR HSEEN LL_RCC_HSE_EnableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_EnableBypass(void)
{
SET_BIT(RCC->CR, RCC_CR_HSEEN);
}
/**
* @brief Disable external clock source (HSE bypass).
* @rmtoll CR HSEEN LL_RCC_HSE_DisableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_DisableBypass(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSEEN);
}
/**
* @brief Check if HSE Bypass clock is on
* @rmtoll CR HSEEN LL_RCC_HSE_IsBypass
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSE_IsBypass(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_HSEEN) == (RCC_CR_HSEEN)) ? 1UL : 0UL);
}
/**
* @}
*/
#if defined(RCC_LSE_SUPPORT)
/** @defgroup RCC_LL_EF_LSE LSE
* @{
*/
/**
* @brief Enable Low Speed External (LSE) crystal.
* @rmtoll BDCR LSEON LL_RCC_LSE_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_Enable(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSEON);
}
/**
* @brief Disable Low Speed External (LSE) crystal.
* @rmtoll BDCR LSEON LL_RCC_LSE_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_Disable(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON);
}
/**
* @brief Enable external clock source (LSE bypass).
* @rmtoll BDCR LSEBYP LL_RCC_LSE_EnableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_EnableBypass(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP);
}
/**
* @brief Disable external clock source (LSE bypass).
* @rmtoll BDCR LSEBYP LL_RCC_LSE_DisableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_DisableBypass(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP);
}
/**
* @brief Set LSE oscillator drive capability
* @note The oscillator is in Xtal mode when it is not in bypass mode.
* @param LSEDrive This parameter can be one of the following values:
* @arg @ref LL_RCC_LSEDRIVE_CLOSE
* @arg @ref LL_RCC_LSEDRIVE_LOW
* @arg @ref LL_RCC_LSEDRIVE_MEDIUM
* @arg @ref LL_RCC_LSEDRIVE_HIGH
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_SetDriveCapability(uint32_t LSEDrive)
{
MODIFY_REG(RCC->ECSCR, RCC_ECSCR_LSE_DRIVER, LSEDrive);
}
/**
* @brief Get LSE oscillator drive capability
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LSEDRIVE_CLOSE
* @arg @ref LL_RCC_LSEDRIVE_LOW
* @arg @ref LL_RCC_LSEDRIVE_MEDIUM
* @arg @ref LL_RCC_LSEDRIVE_HIGH
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_GetDriveCapability(void)
{
return (uint32_t)(READ_BIT(RCC->ECSCR, RCC_ECSCR_LSE_DRIVER));
}
/**
* @brief Set LSE startup time
* @param LSEStartup This parameter can be one of the following values:
* @arg @ref LL_RCC_LSESTARTUP_DELAY_LOW
* @arg @ref LL_RCC_LSESTARTUP_DELAY_MEDIUM
* @arg @ref LL_RCC_LSESTARTUP_DELAY_HIGH
* @arg @ref LL_RCC_LSESTARTUP_DELAY_VERY_HIGH
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_SetStartupTime(uint32_t LSEStartup)
{
MODIFY_REG(RCC->ECSCR, RCC_ECSCR_LSE_STARTUP, LSEStartup);
}
/**
* @brief Get LSE startup time
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LSESTARTUP_DELAY_LOW
* @arg @ref LL_RCC_LSESTARTUP_DELAY_MEDIUM
* @arg @ref LL_RCC_LSESTARTUP_DELAY_HIGH
* @arg @ref LL_RCC_LSESTARTUP_DELAY_VERY_HIGH
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_GetStartupTime(void)
{
return (uint32_t)(READ_BIT(RCC->ECSCR, RCC_ECSCR_LSE_STARTUP));
}
/**
* @brief Enable Clock security system on LSE.
* @rmtoll BDCR LSECSSON LL_RCC_LSE_EnableCSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_EnableCSS(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON);
}
/**
* @brief Disable Clock security system on LSE.
* @note Clock security system can be disabled only after a LSE
* failure detection. In that case it MUST be disabled by software.
* @rmtoll BDCR LSECSSON LL_RCC_LSE_DisableCSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_DisableCSS(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSECSSON);
}
/**
* @brief Check if LSE oscillator Ready
* @rmtoll BDCR LSERDY LL_RCC_LSE_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_IsReady(void)
{
return ((READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == (RCC_BDCR_LSERDY)) ? 1UL : 0UL);
}
/**
* @brief Check if CSS on LSE failure Detection
* @rmtoll BDCR LSECSSD LL_RCC_LSE_IsCSSDetected
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_IsCSSDetected(void)
{
return ((READ_BIT(RCC->BDCR, RCC_BDCR_LSECSSD) == (RCC_BDCR_LSECSSD)) ? 1UL : 0UL);
}
/**
* @}
*/
#endif
/** @defgroup RCC_LL_EF_LSI LSI
* @{
*/
/**
* @brief Enable LSI Oscillator
* @rmtoll CSR LSION LL_RCC_LSI_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSI_Enable(void)
{
SET_BIT(RCC->CSR, RCC_CSR_LSION);
}
/**
* @brief Disable LSI Oscillator
* @rmtoll CSR LSION LL_RCC_LSI_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSI_Disable(void)
{
CLEAR_BIT(RCC->CSR, RCC_CSR_LSION);
}
/**
* @brief Check if LSI is Ready
* @rmtoll CSR LSIRDY LL_RCC_LSI_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSI_IsReady(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == (RCC_CSR_LSIRDY)) ? 1UL : 0UL);
}
/**
* @brief Set LSI Calibration trimming
* @param Value This parameter can be one of the following values:
* @arg @ref LL_RCC_LSICALIBRATION_32768Hz
* @arg @ref LL_RCC_LSICALIBRATION_38400Hz
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSI_SetCalibTrimming(uint32_t Value)
{
MODIFY_REG(RCC->ICSCR, RCC_ICSCR_LSI_TRIM, (Value << RCC_ICSCR_LSI_TRIM_Pos));
}
/**
* @brief Get LSI Calibration trimming
* @rmtoll ICSCR LSI_TRIM LL_RCC_LSI_GetCalibTrimming
* @retval Between Min_Data = 0 and Max_Data = 0x1FFF
*/
__STATIC_INLINE uint32_t LL_RCC_LSI_GetCalibTrimming(void)
{
return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_LSI_TRIM) >> RCC_ICSCR_LSI_TRIM_Pos);
}
/**
* @brief Get LSI Frequency
* @retval HSI clock frequency (in Hz)
*/
__STATIC_INLINE uint32_t LL_RCC_LSI_GetFreq(void)
{
return ((LL_RCC_LSI_GetCalibTrimming() == LL_RCC_LSICALIBRATION_32768Hz) ? 32768UL : \
((LL_RCC_LSI_GetCalibTrimming() == LL_RCC_LSICALIBRATION_38400Hz) ? 38400UL : 0));
}
/**
* @}
*/
#if defined(RCC_BDCR_LSCOEN)
/** @defgroup RCC_LL_EF_LSCO LSCO
* @{
*/
/**
* @brief Enable Low speed clock
* @rmtoll BDCR LSCOEN LL_RCC_LSCO_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSCO_Enable(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSCOEN);
}
/**
* @brief Disable Low speed clock
* @rmtoll BDCR LSCOEN LL_RCC_LSCO_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSCO_Disable(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSCOEN);
}
#if defined(RCC_BDCR_LSCOSEL)
/**
* @brief Configure Low speed clock selection
* @rmtoll BDCR LSCOSEL LL_RCC_LSCO_SetSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_LSCO_CLKSOURCE_LSI
* @arg @ref LL_RCC_LSCO_CLKSOURCE_LSE
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSCO_SetSource(uint32_t Source)
{
MODIFY_REG(RCC->BDCR, RCC_BDCR_LSCOSEL, Source);
}
/**
* @brief Get Low speed clock selection
* @rmtoll BDCR LSCOSEL LL_RCC_LSCO_GetSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LSCO_CLKSOURCE_LSI
* @arg @ref LL_RCC_LSCO_CLKSOURCE_LSE
*/
__STATIC_INLINE uint32_t LL_RCC_LSCO_GetSource(void)
{
return (uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_LSCOSEL));
}
/**
* @}
*/
#endif
#endif
/** @defgroup RCC_LL_EF_System System
* @{
*/
/**
* @brief Configure the system clock source
* @rmtoll CFGR SW LL_RCC_SetSysClkSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_SYS_CLKSOURCE_HSISYS
* @arg @ref LL_RCC_SYS_CLKSOURCE_HSE
* @arg @ref LL_RCC_SYS_CLKSOURCE_LSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_LSE
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetSysClkSource(uint32_t Source)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, Source);
}
/**
* @brief Get the system clock source
* @rmtoll CFGR SWS LL_RCC_GetSysClkSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSISYS
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSE
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_LSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_LSE
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
*/
__STATIC_INLINE uint32_t LL_RCC_GetSysClkSource(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_SWS));
}
/**
* @brief Set AHB prescaler
* @rmtoll CFGR HPRE LL_RCC_SetAHBPrescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAHBPrescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, Prescaler);
}
/**
* @brief Set APB1 prescaler
* @rmtoll CFGR PPRE LL_RCC_SetAPB1Prescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAPB1Prescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, Prescaler);
}
/**
* @brief Set HSI division factor
* @rmtoll CR HSIDIV LL_RCC_SetHSIDiv
* @note HSIDIV parameter is only applied to SYSCLK_Frequency when HSI is used as
* system clock source.
* @param HSIDiv This parameter can be one of the following values:
* @arg @ref LL_RCC_HSI_DIV_1
* @arg @ref LL_RCC_HSI_DIV_2
* @arg @ref LL_RCC_HSI_DIV_4
* @arg @ref LL_RCC_HSI_DIV_8
* @arg @ref LL_RCC_HSI_DIV_16
* @arg @ref LL_RCC_HSI_DIV_32
* @arg @ref LL_RCC_HSI_DIV_64
* @arg @ref LL_RCC_HSI_DIV_128
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetHSIDiv(uint32_t HSIDiv)
{
MODIFY_REG(RCC->CR, RCC_CR_HSIDIV, HSIDiv);
}
/**
* @brief Get AHB prescaler
* @rmtoll CFGR HPRE LL_RCC_GetAHBPrescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
*/
__STATIC_INLINE uint32_t LL_RCC_GetAHBPrescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE));
}
/**
* @brief Get APB1 prescaler
* @rmtoll CFGR PPRE LL_RCC_GetAPB1Prescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
*/
__STATIC_INLINE uint32_t LL_RCC_GetAPB1Prescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE));
}
/**
* @brief Get HSI division factor
* @rmtoll CR HSIDIV LL_RCC_GetHSIDiv
* @note HSIDIV parameter is only applied to SYSCLK_Frequency when HSI is used as
* system clock source.
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_HSI_DIV_1
* @arg @ref LL_RCC_HSI_DIV_2
* @arg @ref LL_RCC_HSI_DIV_4
* @arg @ref LL_RCC_HSI_DIV_8
* @arg @ref LL_RCC_HSI_DIV_16
* @arg @ref LL_RCC_HSI_DIV_32
* @arg @ref LL_RCC_HSI_DIV_64
* @arg @ref LL_RCC_HSI_DIV_128
*/
__STATIC_INLINE uint32_t LL_RCC_GetHSIDiv(void)
{
return (uint32_t)(READ_BIT(RCC->CR, RCC_CR_HSIDIV));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_MCO MCO
* @{
*/
/**
* @brief Configure MCOx
* @rmtoll CFGR MCOSEL LL_RCC_ConfigMCO\n
* CFGR MCOPRE LL_RCC_ConfigMCO
* @param MCOxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_MCO1SOURCE_NOCLOCK
* @arg @ref LL_RCC_MCO1SOURCE_SYSCLK
* @arg @ref LL_RCC_MCO1SOURCE_HSI
* @arg @ref LL_RCC_MCO1SOURCE_HSE
* @arg @ref LL_RCC_MCO1SOURCE_LSI
* @arg @ref LL_RCC_MCO1SOURCE_LSE
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
* @param MCOxPrescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_MCO1_DIV_1
* @arg @ref LL_RCC_MCO1_DIV_2
* @arg @ref LL_RCC_MCO1_DIV_4
* @arg @ref LL_RCC_MCO1_DIV_8
* @arg @ref LL_RCC_MCO1_DIV_16
* @arg @ref LL_RCC_MCO1_DIV_32
* @arg @ref LL_RCC_MCO1_DIV_64
* @arg @ref LL_RCC_MCO1_DIV_128
* @retval None
*/
__STATIC_INLINE void LL_RCC_ConfigMCO(uint32_t MCOxSource, uint32_t MCOxPrescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE, MCOxSource | MCOxPrescaler);
}
/**
* @brief Get MCO clock source
* @rmtoll CFGR MCOSEL LL_RCC_GetMCOClockSource
* @param MCOx This parameter can be one of the following values:
* @arg @ref LL_RCC_MCO1_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_MCO1SOURCE_NOCLOCK
* @arg @ref LL_RCC_MCO1SOURCE_SYSCLK
* @arg @ref LL_RCC_MCO1SOURCE_HSI
* @arg @ref LL_RCC_MCO1SOURCE_HSE
* @arg @ref LL_RCC_MCO1SOURCE_LSI
* @arg @ref LL_RCC_MCO1SOURCE_LSE
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
*/
__STATIC_INLINE uint32_t LL_RCC_GetMCOClockSource(uint32_t MCOx)
{
return (uint32_t)(READ_BIT(RCC->CFGR, MCOx));
}
/**
* @brief Get MCO division factor
* @rmtoll CFGR MCOPRE LL_RCC_GetMCODiv
* @param MCOx This parameter can be one of the following values:
* @arg @ref LL_RCC_MCO1_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_MCO1_DIV_1
* @arg @ref LL_RCC_MCO1_DIV_2
* @arg @ref LL_RCC_MCO1_DIV_4
* @arg @ref LL_RCC_MCO1_DIV_8
* @arg @ref LL_RCC_MCO1_DIV_16
* @arg @ref LL_RCC_MCO1_DIV_32
* @arg @ref LL_RCC_MCO1_DIV_64
* @arg @ref LL_RCC_MCO1_DIV_128
*/
__STATIC_INLINE uint32_t LL_RCC_GetMCODiv(uint32_t MCOx)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_MCOPRE));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_Peripheral_Clock_Source Peripheral Clock Source
* @{
*/
#if defined(COMP1)
/**
* @brief Configure COMPx clock source
* @rmtoll CCIPR COMPxSEL LL_RCC_SetCOMPClockSource
* @param COMPxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_COMP1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_COMP1_CLKSOURCE_LSC
* @arg @ref LL_RCC_COMP2_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_COMP2_CLKSOURCE_LSC
* @note Depending on devices and packages,some COMP may not be available.
* Refer to device datasheet for COMP availability.
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetCOMPClockSource(uint32_t COMPxSource)
{
register uint32_t regTmp1 = (RCC->CCIPR & 0x0000FF00U) & (~(COMPxSource & 0x0000FF00U));
regTmp1 = regTmp1 | (regTmp1 >> 2);
register uint32_t regTmp2 = ((COMPxSource & 0xFFU) | ((COMPxSource & 0xFFU) >> 2)) << 8U;
MODIFY_REG(RCC->CCIPR, (COMPxSource & 0x0000FF00U), (regTmp1 | regTmp2));
}
#endif /* COMP1 */
#if defined(COMP1)
/**
* @brief Get COMPx clock source
* @rmtoll CCIPR COMPxSEL LL_RCC_GetCOMPClockSource
* @param COMPx This parameter can be one of the following values:
* @arg @ref LL_RCC_COMP1_CLKSOURCE
* @arg @ref LL_RCC_COMP2_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_COMP1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_COMP1_CLKSOURCE_LSC
* @arg @ref LL_RCC_COMP2_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_COMP2_CLKSOURCE_LSC
* @note Depending on devices and packages,some COMP may not be available.
* Refer to device datasheet for COMP availability.
*/
__STATIC_INLINE uint32_t LL_RCC_GetCOMPClockSource(uint32_t COMPx)
{
return (uint32_t)((READ_BIT(RCC->CCIPR, COMPx) >> 8U) | COMPx);
}
#endif /* COMP1 */
#if defined(RCC_CCIPR_LPTIMSEL)
/**
* @brief Configure LPTIMx clock source
* @rmtoll CCIPR LPTIMxSEL LL_RCC_SetLPTIMClockSource
* @param LPTIMxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSI
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_NONE
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSE
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetLPTIMClockSource(uint32_t LPTIMxSource)
{
register uint32_t regTmp1 = (RCC->CCIPR & 0x0000FF00U);
register uint32_t regTmp2 = ((RCC->CCIPR & 0x0000FF00U) >> 2);
register uint32_t regTmp = regTmp1 | regTmp2;
MODIFY_REG(RCC->CCIPR, RCC_CCIPR_LPTIMSEL, (LPTIMxSource | regTmp));
}
/**
* @brief Get LPTIMx clock source
* @rmtoll CCIPR LPTIMxSEL LL_RCC_GetLPTIMClockSource
* @param LPTIMx This parameter can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSI
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_NONE
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSE
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
*/
__STATIC_INLINE uint32_t LL_RCC_GetLPTIMClockSource(uint32_t LPTIMx)
{
return (uint32_t)(READ_BIT(RCC->CCIPR, RCC_CCIPR_LPTIMSEL));
}
#endif /* RCC_CCIPR_LPTIMSEL */
/**
* @}
*/
/** @defgroup RCC_LL_EF_FLAG_Management FLAG Management
* @{
*/
/**
* @brief Clear LSI ready interrupt flag
* @rmtoll CICR LSIRDYC LL_RCC_ClearFlag_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSIRDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_LSIRDYC);
}
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Clear LSE ready interrupt flag
* @rmtoll CICR LSERDYC LL_RCC_ClearFlag_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSERDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_LSERDYC);
}
#endif
/**
* @brief Clear HSI ready interrupt flag
* @rmtoll CICR HSIRDYC LL_RCC_ClearFlag_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSIRDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_HSIRDYC);
}
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Clear LSE Clock security system interrupt flag
* @rmtoll CICR LSECSSC LL_RCC_ClearFlag_LSECSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSECSS(void)
{
SET_BIT(RCC->CICR, RCC_CICR_LSECSSC);
}
#endif
/**
* @brief Check if LSI ready interrupt occurred or not
* @rmtoll CIFR LSIRDYF LL_RCC_IsActiveFlag_LSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSIRDY(void)
{
return ((READ_BIT(RCC->CIFR, RCC_CIFR_LSIRDYF) == (RCC_CIFR_LSIRDYF)) ? 1UL : 0UL);
}
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Check if LSE ready interrupt occurred or not
* @rmtoll CIFR LSERDYF LL_RCC_IsActiveFlag_LSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSERDY(void)
{
return ((READ_BIT(RCC->CIFR, RCC_CIFR_LSERDYF) == (RCC_CIFR_LSERDYF)) ? 1UL : 0UL);
}
#endif
/**
* @brief Check if HSI ready interrupt occurred or not
* @rmtoll CIFR HSIRDYF LL_RCC_IsActiveFlag_HSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSIRDY(void)
{
return ((READ_BIT(RCC->CIFR, RCC_CIFR_HSIRDYF) == (RCC_CIFR_HSIRDYF)) ? 1UL : 0UL);
}
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Check if LSE Clock security system interrupt occurred or not
* @rmtoll CIFR LSECSSF LL_RCC_IsActiveFlag_LSECSS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSECSS(void)
{
return ((READ_BIT(RCC->CIFR, RCC_CIFR_LSECSSF) == (RCC_CIFR_LSECSSF)) ? 1UL : 0UL);
}
#endif
/**
* @brief Check if RCC flag Independent Watchdog reset is set or not.
* @rmtoll CSR IWDGRSTF LL_RCC_IsActiveFlag_IWDGRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_IWDGRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_IWDGRSTF) == (RCC_CSR_IWDGRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Option byte reset is set or not.
* @rmtoll CSR OBLRSTF LL_RCC_IsActiveFlag_OBLRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_OBLRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_OBLRSTF) == (RCC_CSR_OBLRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Pin reset is set or not.
* @rmtoll CSR PINRSTF LL_RCC_IsActiveFlag_PINRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PINRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_PINRSTF) == (RCC_CSR_PINRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Software reset is set or not.
* @rmtoll CSR SFTRSTF LL_RCC_IsActiveFlag_SFTRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_SFTRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_SFTRSTF) == (RCC_CSR_SFTRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag BOR or POR/PDR reset is set or not.
* @rmtoll CSR PWRRSTF LL_RCC_IsActiveFlag_PWRRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PWRRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_PWRRSTF) == (RCC_CSR_PWRRSTF)) ? 1UL : 0UL);
}
/**
* @brief Set RMVF bit to clear the reset flags.
* @rmtoll CSR RMVF LL_RCC_ClearResetFlags
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearResetFlags(void)
{
SET_BIT(RCC->CSR, RCC_CSR_RMVF);
}
/**
* @brief Enable NRST filter
* @rmtoll CSR NRST_FLTDIS LL_RCC_EnableNRSTFilter
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableNRSTFilter(void)
{
CLEAR_BIT(RCC->CSR, RCC_CSR_NRST_FLTDIS);
}
/**
* @brief Disable NRST filter
* @rmtoll CSR NRST_FLTDIS LL_RCC_DisableNRSTFilter
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableNRSTFilter(void)
{
SET_BIT(RCC->CSR, RCC_CSR_NRST_FLTDIS);
}
/**
* @brief Check if NRST filter is enable
* @rmtoll CSR NRST_FLTDIS LL_RCC_IsEnableNRSTFilter
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnableNRSTFilter(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_NRST_FLTDIS) == (RCC_CSR_NRST_FLTDIS)) ? 0UL : 1UL);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_IT_Management IT Management
* @{
*/
/**
* @brief Enable LSI ready interrupt
* @rmtoll CIER LSIRDYIE LL_RCC_EnableIT_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_LSIRDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_LSIRDYIE);
}
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Enable LSE ready interrupt
* @rmtoll CIER LSERDYIE LL_RCC_EnableIT_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_LSERDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_LSERDYIE);
}
#endif
/**
* @brief Enable HSI ready interrupt
* @rmtoll CIER HSIRDYIE LL_RCC_EnableIT_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_HSIRDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_HSIRDYIE);
}
/**
* @brief Disable LSI ready interrupt
* @rmtoll CIER LSIRDYIE LL_RCC_DisableIT_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_LSIRDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_LSIRDYIE);
}
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Disable LSE ready interrupt
* @rmtoll CIER LSERDYIE LL_RCC_DisableIT_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_LSERDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_LSERDYIE);
}
#endif
/**
* @brief Disable HSI ready interrupt
* @rmtoll CIER HSIRDYIE LL_RCC_DisableIT_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_HSIRDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_HSIRDYIE);
}
/**
* @brief Checks if LSI ready interrupt source is enabled or disabled.
* @rmtoll CIER LSIRDYIE LL_RCC_IsEnabledIT_LSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSIRDY(void)
{
return ((READ_BIT(RCC->CIER, RCC_CIER_LSIRDYIE) == (RCC_CIER_LSIRDYIE)) ? 1UL : 0UL);
}
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Checks if LSE ready interrupt source is enabled or disabled.
* @rmtoll CIER LSERDYIE LL_RCC_IsEnabledIT_LSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSERDY(void)
{
return ((READ_BIT(RCC->CIER, RCC_CIER_LSERDYIE) == (RCC_CIER_LSERDYIE)) ? 1UL : 0UL);
}
#endif
/**
* @brief Checks if HSI ready interrupt source is enabled or disabled.
* @rmtoll CIER HSIRDYIE LL_RCC_IsEnabledIT_HSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSIRDY(void)
{
return ((READ_BIT(RCC->CIER, RCC_CIER_HSIRDYIE) == (RCC_CIER_HSIRDYIE)) ? 1UL : 0UL);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_EF_Init De-initialization function
* @{
*/
ErrorStatus LL_RCC_DeInit(void);
/**
* @}
*/
/** @defgroup RCC_LL_EF_Get_Freq Get system and peripherals clocks frequency functions
* @{
*/
void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks);
uint32_t LL_RCC_GetMCOClockFreq(uint32_t MCOx);
uint32_t LL_RCC_GetLSCClockFreq(void);
#if defined(COMP1)
uint32_t LL_RCC_GetCOMPClockFreq(uint32_t COMPx);
#endif
#if defined(LPTIM1)
uint32_t LL_RCC_GetLPTIMClockFreq(uint32_t LPTIMx);
#endif
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* defined(RCC) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __PY32F002B_LL_RCC_H */
/************************ (C) COPYRIGHT Puya *****END OF FILE****/